科研成果 #更新时间2023/10/30# 2022 (1) , , , and , 2022: Evaluation of simulated cloud diurnal variation in CMIP6 climate models. Journal of Geophysical Research: Atmospheres, 127, e2021JD036422. (2) Chen, G., and Wang, W.-C., 2022: Short-term precipitation prediction for contiguous United States using deep learning. Geophysical Research Letters, 49, e2022GL097904. (3) H. Kang, X. Shang, M. Abdumutallip, Y. Chen, L. Li, X. Wang, C. Li, H. Ouyang, X. Tang, L. Wang, Y. Rudich, and J. Chen, 2022: Accurate observation of black and brown carbon in atmospheric fine particles via a versatile aerosol concentration enrichment system (VACES). Science of The Total Environment,837, 155817. (4) Y. Peng, H. Wang, Q. Wang, S. Jing, J. An, Y. Gao, C. Huang, R. Yan, H. Dai, T. Cheng, Q. Zhang, M. Li, J. Hu, Z. Shi, L. Li, S. Lou, S. Tao, Q. Hu, J. Lu, and C. Chen, 2022: Observation-based sources evolution of non-methane hydrocarbons (NMHCs) in a megacity of China, Journal of Environmental Sciences, 124, 794-805. (5) Yu Y., Zhu Q., He Q., Gao Y., Zhou X., Zhang R., Zhang X., Li H., Wang W., and T. Cheng, 2022: Variations of aerosol and cloud vertical characteristics based on aircraft measurements in upstream of Shanghai during the 2020 China international import expo, Frontiers in Environmental Science, 10. (6) Wu, B., and Ding, S., 2022: Cold-Eurasia contributes to arctic warm anomalies. Climate Dynamics, 60, 4157–4172. (7) Ke, J., M. Mu, and X. Fang, 2022: Impact of Optimally Growing Initial Errors on the Mesoscale Predictability of Heavy Precipitation Events along the Mei-Yu Front in China. Monthly Weather Review, 150, 2399–2421. (8) Liu, Z., Gao, Y. and Zhang, G, 2022: How well can a convection-permitting-modelling improve the simulation of summer precipitation diurnal cycle over the Tibetan Plateau?. Climate Dynamics, 58, 3121–3138. (9) Gao, Y., Xu, J., Zhang, M. et al, 2022: Regional climate dynamical downscaling over the Tibetan Plateau—From quarter-degree to kilometer-scale.Science China Earth Sciences, 65, 2237–2247. (10) Guo, Y., Z. Wen, Y. Zhu, and X. Chen, 2022: Effect of the Late-1990s Change in Tropical Forcing on Teleconnections to the Amundsen–Bellingshausen Seas Region during Austral Autumn. Journal of Climate, 35, 5687–5702. (11) Li, J., Z. Wen, X. Li, and Y. Guo, 2022: Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO. Journal of Climate, 35, 975–995. (12) Ye, J., Guo, Y., Wen, Z. et al, 2022: Longitudinal oscillation mode of the tropical easterly jet in June: role of precipitation anomalies in Asian monsoon region. Climate Dynamics, 60, 1543–1558. (13) Zhan, X., Wen, Z., Guo, Y., and Huang, S, 2022: Interannual variability of the double easterly jets over the tropical western Pacific and their effects on tropical cyclone genesis. International Journal of Climatology, 43(5), 2050–2061. (14) Liang, X., 2022: The Causal Interaction between Complex Subsystems. Entropy, 24, 1-3. (15) Y. Rong and X. Liang, 2022: An Information Flow-Based Sea Surface Height Reconstruction Through Machine Learning. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-9. (16) S. Lv, C. Simmer, Y. Zeng, Z. Su, J. Wen, 2022: Impact of profile-averaged soil ice fraction on passive microwave brightness temperature Diurnal Amplitude Variations (DAV) at L-band, Cold Regions Science and Technology, 205, 103674. (17) Mu, M., Zhang, K. & Wang, Q, 2022: Recent Progress in Applications of the Conditional Nonlinear Optimal Perturbation Approach to Atmosphere-Ocean Sciences. Chinese Annals of Mathematics, Series B, 43, 1033–1048. (18) D. Liang and B. Sun, 2022: Linearization of light scattering properties based on the physical-geometric optics method, Open Express, 30, 22178-22199. (19) C. Gao, B. Sun, 2022: Improvement and application of linearized invariant imbedding T-matrix scattering method, Journal of Quantitative Spectroscopy and Radiative Transfer, 290, 108322. (20) B. Sun, C. Gao, and Robert Spurr, 2022: Scalar thermal radiation using the adding-doubling method, Open Express, 30, 30075-30097. (21) B. Sun, C. Gao, D. Liang, Z. Liu, and J. Liu, 2022: Capability and convergence of linearized invariant-imbedding T-matrix and physical-geometric optics methods for light scattering, Open Express, 30, 37769-37785. (22) Gao, C., Liang, D., Sun, B., Liu, J., Liu, Z. 2022: Linearized Single-Scattering Property Database for Hexagonal Prism Ice Particles. Remote Sensing, 14, 6138. (23) X. Tan, B. Sun, G. Wang, T. Cheng, K. Huang, F. Shen, 2022: Consecutive retrieval of aerosol optical depth and total suspended solid concentration in turbid coastal water of Eastern China, Journal of Quantitative Spectroscopy and Radiative Transfer, 287, 108231. (24) Zhao, Y., and D. Sun, 2022: ENSO Asymmetry in CMIP6 Models. Journal of Climate, 35, 5555–5572. (25) Wang, G., Wu, L., Mei, W. et al. 2022: Ocean currents show global intensification of weak tropical cyclones. Nature, 611, 496–500. (26) Li, H., Xu, F., and Wang, G. 2022: Global mapping of mesoscale eddy vertical tilt. Journal of Geophysical Research: Oceans, 127, e2022JC019131. (27) L. Wu, and G. Wang. 2022: Surface net heat flux estimated from drifter observations. Journal of Climate, 17,094009. (28) Q. Shi, and G. Wang. 2022: Satellite observed quick shift events of the wind jet over the South China Sea in summer and its impacts on the ocean circulation, Remote Sensing of Environment, 276, 113039. (29) Huang, X. and Wang, G. 2022: Response of a Mesoscale Dipole Eddy to the Passage of a Tropical Cyclone: A Case Study Using Satellite Observations and Numerical Modeling. Remote Sensing, 14, 2865. (30) Yan, Y., Wang, G., Wu, H., Gu, G., 2022: Nanding, N. Characteristics of Precipitation and Floods during Typhoons in Guangdong Province. Remote Sensing, 14, 1945. (31) Yan, Y., Wang, G., Nanding, N.; Chen, W. 2022: Hydrological Evaluation of Satellite-Based Precipitation Products in Hunan Province. Remote Sensing,14, 3127. (32) Wang, X., Wu, Q., Wang, G., and Schroeder, S. R. 2022: Double acceleration effects of closely spaced pairs of ocean fronts on high-wind occurrence frequency during boreal winter. Journal of Geophysical Research: Oceans, 127, e2021JC018020. (33) Liu, R., G. Wang, C. Chapman, and C. Chen, 2022: The Attenuation Effect of Jet Filament on the Eastward Mesoscale Eddy Lifetime in the Southern Ocean. Journal of Physical Oceanography, 52, 805–822. (34) Sun Y., and Wang X. 2022: Meteorological factor contributions to the seesaw concentration pattern between PM2.5 and O3 in Shanghai. Frontiers in Environmental Science. 10. (35) Lv S, Wen J, Simmer C, Zeng Y, Guo Y, and Su Z. 2022: A Novel Freeze-Thaw State Detection Algorithm Based on L-Band Passive Microwave Remote Sensing. Remote Sensing. 14, 4747. (36) Chen, X., Wen, Z., Song, Y. et al. 2022: Causes of extreme 2020 Meiyu-Baiu rainfall: a study of combined effect of Indian Ocean and Arctic. Climate Dynamics, 59, 3485–3501. (37) Liu, S., Wu, Q., Yao, Y., Schroeder, S., and Wang, L. 2022: Impacts of autumn-winter Tibetan Plateau snow anomalies on North Atlantic-Europe and Arctic climate. Journal of Geophysical Research: Atmospheres, 127, e2021JD035791. (38) Hu, Y., Wu, Q., Hu, A. et al. 2022: Quantifying contributions of ozone changes to global and arctic warming during the second half of the twentieth century. Climate Dynamics, 61, 1209–1228. (39) Zhong, W., and Wu, Z. 2022: Subseasonal variations of Eurasian wintertime surface air temperature: two distinct leading modes. Climate Dynamics, 59, 85–108. (40) Cao, C., and Wu, Z. 2022: Modulation of the Tibetan Plateau snow cover on the interannual variations of the MJO-Related winter surface air temperature anomalies over East Asia. Climate Dynamics, 59, 3427–3437. (41) Zhong, W., and Wu, Z. 2022: Subseasonal strength reversal of the East Asian winter monsoon. Climate Dynamics, 61, 709–727. (42) P. Zha, and Z. Wu. 2022: Contribution of the Tibetan Plateau Winter Snow Cover to Seasonal Prediction of the East Asian Summer Monsoon, Atmosphere-Ocean, 61:1, 25-39. (43) P. Zhang, Z. Wu, Z. Zhu and R. Jin. 2022:Promoting seasonal prediction capability of the early autumn tropical cyclone formation frequency over the western North Pacific: effect of Arctic sea ice. Environmental Research Letters, 17, 124012. (44) P. Zha, and Z. Wu. 2022: Contribution of the Tibetan Plateau Snow Cover to the Record-breaking Rainfall Over the Yangtze River Valley in June 2020, Atmosphere-Ocean, 61:2, 122-134. (45) Pang, X., Wu, B., and Ding, S. 2022: Strengthened connection between meridional location of winter polar front jet and surface air temperature since the mid-1990s. Climate Dynamics, 60, 3211–3224. (46) Zhang, X., Wu, B., and Ding, S. 2022: Influence of spring Arctic sea ice melt on Eurasian surface air temperature. Climate Dynamics, 59, 3305–3316 . (47) W. Hua, and B. Wu, 2022: Atmospheric circulation anomaly over mid- and high-latitudes and its association with severe persistent haze events in Beijing, Atmospheric Research, 277, 106315. (48) Zhang, X., Wu, B., and Ding, S. 2022: Combined effects of La Niña events and Arctic tropospheric warming on the winter North Pacific storm track. Climate Dynamics, 60, 1351–1368. (49) Liu, L., Wu, B., and Ding, S. 2022: On the association of the summertime shortwave cloud radiative effect in northern Russia with atmospheric circulation and climate over East Asia. Geophysical Research Letters, 49, e2021GL096606. (50) B. Wu et al. 2022:A recent weakening of winter temperature association between Arctic and Asia. Environmental Research Letters, 17, 034030. (51) Yang, H., Zhou, X., Yang, Q. et al. 2022: Roles of climate feedback and ocean vertical mixing in modulating global warming rate. Climate Dynamics, 60, 1187–1201. (52) You, Q., Jiang, Z., Yue, X. et al. 2022: Recent frontiers of climate changes in East Asia at global warming of 1.5°C and 2°C. npj Climate and Atmospheric Science, 5, 80. (53) Safi Ullah, Q. You et al. 2022: Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data, Atmospheric Research, 268, 105998. (54) Ullah, S., You, Q., Chen, D., Sachindra, D. A., AghaKouchak, A., Kang, S., et al. 2022: Future population exposure to daytime and nighttime heat waves in South Asia. Earth's Future, 10, e2021EF002511. (55) Ullah, S., You, Q., et al. 2022: Characteristics of human thermal stress in South Asia during 1981–2019. Environmental Research Letters, 17, 104018. (56) J. Cheng, Q. You, M. Cai, J. Sun, and Y. Zhou, 2022: Cloud Water Resource over the Asian water tower in recent decades, Atmospheric Research, 269, 106038. (57) Z. Jin, Q. You, et al. 2022: Increased ecohydrological drying over terrestrial ecosystems, Atmospheric Research, 277, 106308. (58) Yang, Y., You, Q., Jin, Z., Zuo, Z., and Zhang, Y. 2022: Construction of surface air temperature over the Tibetan Plateau based on generative adversarial networks. International Journal of Climatology, 42, 10107–10125. (59) Zhang, J., You, Q., Wu, F. et al. 2022: The Warming of the Tibetan Plateau in Response to Transient and Stabilized 2.0°C/1.5°C Global Warming Targets. Advances in Atmospheric Sciences, 39, 1198–1206. (60) J. Zhang, Q. You, G. Ren and S. Ullah. 2022: Projected changes in mild weather frequency over China under a warmer climate. Environmental Research Letters, 17, 114042. (61) J. Zhang, Q. You and S. Ullah. 2022: Changes in photovoltaic potential over China in a warmer future. Environmental Research Letters, 17, 114032. (62) J. Zhang, Q. You, G. Ren, and S. Ullah, 2022: Substantial increase in human-perceived heatwaves in eastern China in a warmer future, Atmospheric Research, 283, 106554. (63) Y. Zhou, J. Yuan, et al. 2022: The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer, Atmospheric and Oceanic Science Letters, 15, 100212. (64)Zhou, Y., Yuan, J., Wen, Z. et al. 2022: The influence of the wave trains on the intraseasonal variability of the East Asian subtropical westerly jet in early and late summer. Climate Dynamics, 60, 2081–2095. (65) Lin, Q., and J. Yuan, 2022: Linkages between Amplified Quasi-Stationary Waves and Humid Heat Extremes in Northern Hemisphere Midlatitudes. Journal of Climate, 35, 8245–8258. (66) J. Yuan, Q. Lin, S. Chen, H. Zhao, X. Xie, Z. Cai, J. Zhang, T. Cheng, M. Hua, R. Zhang, 2022: Influence of global warming and urbanization on regional climate of Megacity: A case study of Chengdu, China, Urban Climate, 44, 101227. (67) Zhou, Y., Zhan, R., Wang, Y., Wu, Z., Chen, G., and Wang, L. 2022: Characteristics and controlling factors of rapid weakening of tropical cyclones after reaching their intensity peaks over the western North Pacific. Journal of Geophysical Research: Atmospheres, 127, e2022JD036697. (68) Zhan, R., Wang, Y. and Ding, Y. 2022: Impact of the Western Pacific Tropical Easterly Jet on Tropical Cyclone Genesis Frequency over the Western North Pacific. Advances in Atmospheric Sciences, 39, 235–248. (69) Zhang, R., Tang, X., Liu, J. et al. 2022: From concept to action: a united, holistic and One Health approach to respond to the climate change crisis. Infectious Diseases of Poverty, 11, 17. (70) Ouyang, H., Tang, X., and Zhang, R. 2022: Research Themes, Trends and Future Priorities in the Field of Climate Change and Health: A Review. Atmosphere, 13, 2076. (71) J. Ma, R. Zhang, et al. 2022: MERRA-2 PM2.5 mass concentration reconstruction in China mainland based on LightGBM machine learning. Science of The Total Environment, 827, 154363. (72) S. Chen, R. Zhang, et al. 2022: Sources, characteristics and climate impact of light-absorbing aerosols over the Tibetan Plateau, Earth-Science Reviews, 232, 104111. (73) Dou, J., and Zhang, R. 2022: Weakened relationship between ENSO and Antarctic sea ice in recent decades. Climate Dynamics, 60, 1313–1327. (74) S. Chen, H. Bi, R. Zhang, et al. 2022: Impact of dust-cloud-radiation interactions on surface albedo: a case study of 'Tiramisu' snow in Urumqi, China. Environmental Research Letters, 17, 015001. (75) Song, X., R. Zhang, and X. Rong, 2022: Dynamic Causes of ENSO Decay and Its Asymmetry. Journal of Climate, 35, 445–462. (76) Zhang, R., J. A. Screen, and R. Zhang, 2022: Arctic and Pacific Ocean Conditions Were Favorable for Cold Extremes over Eurasia and North America during Winter 2020/21. Bulletin of the American Meteorological Society, 103, E2285–E2301. (77) Zhang, R., Zhang, R., and Sun, C. 2022: Modulation of the interdecadal variation of atmospheric background flow on the recent recovery of the EAWM during the 2000s and its link with North Atlantic–Arctic warming. Climate Dynamics, 59, 561–578. (78) Y. Cui, D. Zheng, Y. Zhang, et al. 2022: Association of lightning occurrence with precipitation cloud column structure at a fixed position, Atmospheric Research, 267, 105989. (79) Zhao, C., Zhang, Y., Zheng, D., Liu, X., Zhang, Y., Fan, X., et al. 2022: Using polarimetric radar observations to characterize first echoes of thunderstorms and nonthunderstorms: A comparative study. Journal of Geophysical Research: Atmospheres, 127, e2022JD036671. (80) Li, Y., Zhang, Y., Zhang, Y., and Krehbiel, P. R. 2022: Analysis of the configuration relationship between the morphological characteristics of lightning channels and the charge structure based on the localization of VHF radiation sources. Geophysical Research Letters, 49, e2022GL099586. (81) Guo, Y., Shen, H., Pullinen, I., Luo, H., Kang, S., Vereecken, L., Fuchs, H., Hallquist, M., Acir, I.-H., Tillmann, R., Rohrer, F., Wildt, J., Kiendler-Scharr, A., Wahner, A., Zhao, D., and Mentel, T. F. 2022: Identification of highly oxygenated organic molecules and their role in aerosol formation in the reaction of limonene with nitrate radical, Atmospheric Chemistry and Physics, 22, 11323–11346. (82) C. Wang, X. An, D. Zhao, et al. 2022: Development of GRAPES-CUACE adjoint model version 2.0 and its application in sensitivity analysis of ozone pollution in north China, Science of The Total Environment, 826, 153879. (83) H. Shen, L.Vereecken, S. Kang, I. Pullinen, H. Fuchs, D. Zhao, and T. F. Mentel. 2022: Unexpected significance of a minor reaction pathway in daytime formation of biogenic highly oxygenated organic compounds. Science advances,8, eabp8702. (84) Zhang, R., W. Zhou, W. Tian, Y. Zhang, Z. Liu, and P. K. Y. Cheung, 2022: Changes in the Relationship between ENSO and the Winter Arctic Stratospheric Polar Vortex in Recent Decades. Journal of Climate, 35, 5399–5414. (85) Liu, Z., W. Zhou, R. Zhang, Y. Zhang, and Y. Wang, 2022: Global-Scale Interpretable Drought Reconstruction Utilizing Anomalies of Atmospheric Dynamics. Journal of Hydrometeorology, 23, 1507–1524. (86) Zhang, Y., W. Zhou, J. Ling, and L. Qi, 2022: Water Vapor Transport by an Equivalent-Barotropic Cyclonic Anomaly Corresponding to Extreme Austral Late Summer Precipitation in Southeast Australia during 2021. Journal of the Atmospheric Sciences, 79, 2343–2361. (87) Li, Y., W. Zhou, S. Yang, R. Zhang, H. Cheung, and Y. Zhang, 2022: Recent Early-Spring Drying Trend over Southern China Associated with Changes in the Zonal Thermal Contrast over the Pacific. Journal of Climate, 35, 6487–6498. (88) Zhang, Y., Zhou, W., Wang, X. et al. 2022: Indian Ocean Dipole and ENSO’s mechanistic importance in modulating the ensuing-summer precipitation over Eastern China. npj Climate and Atmospheric Science, 5, 48. (89) Y. Zhang, W. Zhou. et al. 2022: IOD, ENSO, and seasonal precipitation variation over Eastern China, Atmospheric Research, 270, 106042. (90) Zhang, M., Zhou, ZQ., Zhang, R. et al. 2022: Interannual variability of surface air temperature over indochina peninsula during summer monsoon onset. Climate Dynamics, 60, 3543–3560. (91) Lin, Z., Zuo, Z., Zhang, R., Xiao, D., You, Q., and Qiao, L. 2022: Persistence of soil enthalpy drives the winter and summer climate connection in the Tibetan Plateau. Geophysical Research Letters, 49, e2022GL098503. (92) Zhang, K., Zuo, Z., Zhang, R., Xiao, D., and Qiao, L. 2022: Constrained emergence of air temperature change signal in northern-central India from background variations. Geophysical Research Letters, 49, e2022GL097736. (93) J. Feng. et al. 2022: Improving typhoon predictions by assimilating the retrieval of atmospheric temperature profiles from the FengYun-4A's Geostationary Interferometric Infrared Sounder (GIIRS), Atmospheric Research, 280, 106391. (94) Wang, P., Zhu, S., Vrekoussis, M. et al. 2022: Is atmospheric oxidation capacity better in indicating tropospheric O3 formation?. Frontiers of Environmental Science Engineering, 16, 65. (95) P. Wang. et al. 2022: Atmospheric oxidation capacity and its contribution to secondary pollutants formation, Chinese Science Bulletin, 67, 2069-2078. (96)Wei, Y., F. Liu, H. Ren, G. Chen, C. Feng, and B. Chen, 2022: Western Pacific Premoistening for Eastward-Propagating BSISO and Its ENSO Modulation. Journal of Climate, 35, 4979–4996. (97) Wei, Y., and Ren, H.-L. 2022: Distinct MJOs under the two types of La Niña. Journal of Geophysical Research: Atmospheres, 127, e2022JD037646. (98) S. Huang, Z. Wen, X. Chen, Y. Guo, Z. Wang, 2022: The Henan extreme rainfall in July 2021: Modulation of the northward-shift monsoon trough on the synoptic-scale wave train, Advances in Climate Change Research, 13, 819-825. (99) Liu, E., Zhou, G., He, Q., Wu, B., Zhou, H., Gu, W. 2022: Climatic Mechanism of Delaying the Start and Advancing the End of the Growing Season of Stipa krylovii in a Semi-Arid Region from 1985–2018. Agronomy, 12, 1906. (100) Liu, E., Zhou, G., Wu, B. et al. 2022: Response and Adaptation of Single-Cropping Rice Growth Periods to Sowing Date, Cultivar Shift and Extreme Temperatures in China from 1981 to 2010. International Journal of Plant Production, 16, 627–638. (101) Xu, Z., Chen, J., Mu, M. et al. A Nonlinear Representation of Model Uncertainty in a Convective-Scale Ensemble Prediction System. Advances in Atmospheric Sciences, 39, 1432–1450. (102) Xu, Z., Chen, J., Mu, M., Tao, L., Dai, G., Wang, J., et al. 2022: A stochastic and non-linear representation of model uncertainty in a convective-scale ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 148, 2507–2531. (103) Li, H., Xu, F., Wang, G., and Shi, R. 2022: A multi-layer linear Rossby wave dispersion relation for vertical tilt of mesoscale eddies. Journal of Geophysical Research: Oceans, 127, e2022JC018703. (104) Liu, L., Wang, G., Zhang, Z. et al. 2022: Effects of Drag Coefficients on Surface Heat Flux during Typhoon Kalmaegi (2014). Advances in Atmospheric Sciences, 39, 1501–1518. (105) Li, L., Wang, C., Pareja-Roman, L. F., Zhu, J., Chant, R. J., and Wang, G. 2022: Effects of typhoon on saltwater intrusion in a high discharge estuary. Journal of Geophysical Research: Oceans, 127, e2021JC018206. (106) Gu, Y., Wu, L., Zhan, R. et al. 2022: Climatology of developing and nondeveloping disturbances for tropical cyclone genesis over the western North Pacific. Terrestrial, Atmospheric and Oceanic Sciences, 33, 13. (107) Xiu, J., X. Jiang, R. Zhang, W. Guan, and G. Chen, 2022: An Intraseasonal Mode Linking Wintertime Surface Air Temperature over Arctic and Eurasian Continent. Journal of Climate, 35, 2675–2696. (108) Tian, Q., Wen, M., Zhang, R., and Su, J. 2022: Rapid warming of the Arctic troposphere in the winter during 2015–2016 and its relationship to the mid-high latitude teleconnection wave train. International Journal of Climatology, 43, 874–892. (109) H. Ouyang, X. Tang, R. Kumar, R. Zhang, et al. 2022: Toward Better and Healthier Air Quality: Implementation of WHO 2021 Global Air Quality Guidelines in Asia. Bulletin of the American Meteorological Society, 103, e1696–e1703. (110) Zhou, J., Lei, R., Xu, J., Peng, L., Ye, X., Yang, D., Yang, S., Yin, Y., Zhang, R. 2022: The Effects of Short-Term PM2.5 Exposure on Pulmonary Function among Children with Asthma—A Panel Study in Shanghai, China. International Journal of Environmental Research and Public Health, 19, 11385. (111) Z. Cai, Q. You, H. W Chen, R. Zhang, et al. 2022: Amplified wintertime Barents Sea warming linked to intensified Barents oscillation. Environmental Research Letters, 17, 044068. (112) Yu, X., Zhang, H., Xie, B., Wang, Z., Zhao, S., and Zhao, D. 2022: Effective radiative forcings due to anthropogenic emission changes under Covid-19 and post-pandemic recovery scenarios. Journal of Geophysical Research: Atmospheres, 127, e2021JD036251. (113) Wang, Q., Wang, X., Huang, R., Wu, J., Xiao, Y., Hu, M.,Q. Fu, Y. Duan, J. Chen. 2022: Regional transport of PM2.5 and O3 based on complex network method and chemical transport model in the Yangtze River Delta, China. Journal of Geophysical Research: Atmospheres, 127, e2021JD034807. (114) Z. Li, G. Xie, H. Chen, B. Zhan, L. Wang, Y. Mu, A. Mellouki, and J. Chen, 2022: Characterization of peroxyacetyl nitrate (PAN) under different PM2.5 concentration in wintertime at a North China rural site, Journal of Environmental Sciences, 114, 221-232. (115) Ma, X., L. Wang, D. Smith, L. Hermanson, R. Eade, N. Dunstone, S. C. Hardiman, and J. Zhang, 2022: ENSO and QBO modulation of the relationship between Arctic sea ice loss and Eurasian winter climate, Environmental Research Letters, 17, 24016. (116) Wang, L., and M. F. Ting, 2022: Stratosphere-Troposphere Coupling Leading to Extended Seasonal Predictability of Summer North Atlantic Oscillation and Boreal Climate, Geophysical Research Letters, 49, e2021GL096362. (117) Wu, L., Zhao, H., Wang, C., Cao, J., Liang, J., 2022: Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review. Advances in Atmospheric Sciences, 39, 205–221. (118) Gao Z, Wu L and Zhou X, 2022: Fine-Scale Structures in the Mid-Level Eyewall of Super Typhoon Rammasun (2014) Simulated With the WRF-LES Framework, Frontiers in Earth Science, 9:814785. (119)Li Y., S. Huang, and Z. Wen, 2022: The influence of the stratospheric quasi-biennial oscillation on the tropical easterly jet over the Maritime Continent. Geophysical Research Letters, 49, e2022GL098940. (120) 高艳红, 许建伟, 张萌, 刘朝阳, 但婧瑜, 2022: 青藏高原气候动力降尺度从1/4度到公里尺度. 中国科学. 地球科学, 52, 2342-2352. (121) 王桂华, 卢著敏, 孙佳. 2022: 台风-涡旋相互作用研究进展. 海洋科学进展, 40, 755-762. (122) 王爽, 吴其冈,刘师佐, 梁涵洲, 户元涛, 康彩燕, 包晓军, 高艳. 2022: 南极海冰涛动对北半球夏季大气环流的影响. 大气科学. 46, 1349-1365. (123) 吴芳营, 游庆龙, 蔡子怡, 张玲, 康世昌, 翟盘茂. 基于MODIS白天地温产品的青藏高原海拔依赖型变暖特征分析. 大气科学. 46, 442-454. 2021 (1) Wang, X., R. Zhang, Y. Tan, and W. Yu, 2021: Dominant synoptic patterns associated with the decay process of PM 2.5 pollution episodes around Beijing. Atmospheric Chemistry and Physics, 21, 2491-2508. (2) Zhou, Z.-Q., S.-P. Xie, and R. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proceedings of the National Academy of Sciences, 118. (3) Liang, X. S., F. Xu, Y. Rong, R. Zhang, X. Tang, and F. Zhang, 2021: El Niño Modoki can be mostly predicted more than 10 years ahead of time. Scientific reports, 11, 1-14. (4) Liang, X. S., 2021: Measuring the importance of individual units in producing the collective behavior of a complex network. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31, 093123. (5) Dai, G., M. Mu, C. Li, Z. Han, and L. Wang, 2021: Evaluation of the Forecast Performance for Extreme Cold Events in East Asia With Subseasonal‐to‐Seasonal Data Sets From ECMWF. Journal of Geophysical Research: Atmospheres, 126, 2020JD033860. (6) Dai, G., C. Li, Z. Han, D. Luo, and Y. Yao, 2021: The nature and predictability of the East Asian extreme cold events of 2020/21.Advances in Atmospheric Sciences, 39, 566–575. (7) Dai, G., M. Mu, and L. Wang, 2021: The Influence of Sudden Arctic Sea-Ice Thinning on North Atlantic Oscillation Events. Atmosphere-Ocean, 59, 39-52. (8) Fang, X.-H., and F. Zheng, 2021: Effect of the air–sea coupled system change on the ENSO evolution from boreal spring. Climate Dynamics, 57, 109-120. (9) Chen, C., and G. Wang, 2021: Simulated Southern Ocean Upwelling at the Last Glacial Maximum and Early Deglaciation: The Role of Eddy‐Induced Overturning Circulation. Geophysical Research Letters, 48, e2021GL092880. (10) Chen, C., G. Wang, Y. Yan, and F. Luo, 2021: Projected sea level rise on the continental shelves of the China Seas and the dominance of mass contribution. Environmental Research Letters, 16, 064040. (11) Shi, Q., and G. Wang, 2021: Meander Response of the Kuroshio in the East China Sea to Impinging Eddies. Journal of Geophysical Research: Oceans, 126, e2021JC017512. (12) Chen, R., G. Dai, R. Liu, and L. Wang, 2021: Seasonal Influence of the Atmosphere and Ocean on the Fall Sea Ice Extent in the Barents‐Kara Seas. Journal of Geophysical Research: Atmospheres, 126, e2021JD035144. (13) Wang, F., and L. Wang, 2021: An exploration of the connection between quasi-biennial oscillation and Madden-Julian oscillation. Environmental Research Letters, 16, 114021. (14) Zuo, Z., D. Xiao, and Q. He, 2021: Role of the warming trend in global land surface air temperature variations. Science China Earth Sciences, 64, 866-871. (15) Qiao, L., Z. Zuo, and D. Xiao, 2021: Evaluation of soil moisture in CMIP6 simulations. Journal of Climate, 35, 779-800. (16) Bu, L., Z. Zuo, and N. An, 2021: Evaluating boreal summer circulation patterns of CMIP6 climate models over the Asian region. Climate Dynamics, 58, 427-441. (17) Qiao, L., Z. Zuo, D. Xiao, and L. Bu, 2021: Detection, attribution, and future response of global soil moisture in summer. Frontiers in Earth Science, 9:745185. (18) Zhou, Y., J. Zhao, R. Zhan, P. Chen, Z. Wu, and L. Wang, 2021: A Logistic-growth-equation-based Intensity Prediction Scheme for Western North Pacific Tropical Cyclones. Advances in Atmospheric Sciences, 38, 1750-1762. (19) Li, X., R. Zhan, Y. Wang, and J. Xu, 2021: Factors Controlling Tropical Cyclone Intensification Over the Marginal Seas of China. Frontiers in Earth Science, 9, 795186. (20) Sun, B., C. Gao, L. Bi, and R. Spurr, 2021: Analytical Jacobians of single scattering optical properties using the invariant imbedding T-matrix method. Optics Express, 29, 9635-9669. (21) Gao, C., B. Sun, and Y. Zhang, 2021: Electromagnetic wave scattering by charged coated spheres. Journal of Quantitative Spectroscopy and Radiative Transfer, 272, 107757. (22) Luo, R., Q. Ding, Z. Wu, I. Baxter, M. Bushuk, Y. Huang, and X. Dong, 2021: Summertime atmosphere–sea ice coupling in the Arctic simulated by CMIP5/6 models: Importance of large-scale circulation. Climate Dynamics, 56, 1467-1485. (23) Zhang, P., Z. Wu, and R. Jin, 2021: How can the winter North Atlantic Oscillation influence the early summer precipitation in Northeast Asia: Effect of the Arctic sea ice. Climate Dynamics, 56, 1989-2005. (24) Zhang, P., and Z. Wu, 2021: Reexamining the connection of El Niño and North American winter climate. International Journal of Climatology, 41, 6133-6144. (25) Qin, N., L. Wu, and Q. Liu, 2021: Evolution of the Moat Associated with the Secondary Eyewall Formation in a Simulated Tropical Cyclone. Journal of the Atmospheric Sciences, 78, 4021-4035. (26) Jiang, W., L. Wu, and Q. Liu, 2021: High-Wind Drag Coefficient Based on the Tropical Cyclone Simulated With the WRF-LES Framework. Frontiers in Earth Science, 9, 396. (27) Qin, N., and L. Wu, 2021: Possible Environmental Influence on Eyewall Expansion During the Rapid Intensification of Hurricane Helene (2006). Frontiers in Earth Science, 9:715012. (28) Zhang, R., Q. Chu, Z. Zuo, and Y. Qi, 2021: Summertime moisture sources and transportation pathways for China and associated atmospheric circulation patterns. Frontiers in Earth Science, 9:756943. (29) Zhang, R., and J. A. Screen, 2021: Diverse Eurasian Winter Temperature Responses to Barents‐Kara Sea Ice Anomalies of Different Magnitudes and Seasonality. Geophysical Research Letters, 48, e2021GL092726. (30) Zhang, R., R. Zhang, and G. Dai, 2021: Intraseasonal contributions of Arctic sea-ice loss and Pacific decadal oscillation to a century cold event during early 2020/21 winter. Climate Dynamics, 58, 741-758. (31) He, X., R. Zhang, S. Ding, and Z. Zuo, 2021: Interdecadal linkage between the winter Northern Hemisphere climate and Arctic sea ice of diverse location and seasonality. Frontiers in Earth Science, 9:758619. (32) Wu, B., and Z. Li, 2021: Possible impacts of anomalous Arctic sea ice melting on summer atmosphere. International Journal of Climatology, 1-10. (33) Ding, S., and B. Wu, 2021: Linkage between autumn sea ice loss and ensuing spring Eurasian temperature. Climate Dynamics, 57, 2793-2810. (34) Ding, S., B. Wu, and W. Chen, 2021: Dominant Characteristics of early autumn Arctic sea ice variability and its impact on Winter Eurasian climate. Journal of Climate, 34, 1825-1846. (35) Dan, J., Y. Gao, and M. Zhang, 2021: Detecting and Attributing Evapotranspiration Deviations Using Dynamical Downscaling and Convection-Permitting Modeling over the Tibetan Plateau. Water, 13, 2096. (36) Zhao, D., 2021: Supplement of Highly oxygenated organic molecule (HOM) formation in the isoprene oxidation by NO3 radical. Atmospheric Chemistry and Physics, 21, 9681-9704. (37) Shen, H., and Coauthors, 2021: Highly Oxygenated Organic Nitrates Formed from NO3 Radical-Initiated Oxidation of β-Pinene. Environmental science & technology, 55, 15658-15671. (38) Guo, Y., R. Zhang, Z. Wen, J. Li, and Z. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu season from an interdecadal perspective. Science China Earth Science, 64, 1619-1632. (39) Jiang, X., Y. Guo, and Z. Wen, 2021: Relationship between cross-equatorial flows over the Bay of Bengal and Australia in boreal summer: Role of tropical diabatic heating. Atmospheric and Oceanic Science Letters, 100100. (40) Zhang, C., Y. Guo, and Z. Wen, 2021: Interdecadal change in the effect of Tibetan Plateau snow cover on spring precipitation over Eastern China around the early 1990s. Climate Dynamics, 1-18. (41) Zeng, Z., Y. Guo, and Z. Wen, 2021: Interdecadal change in the relationship between the Bay of Bengal summer monsoon and South China Sea summer monsoon onset. Frontiers in Earth Science, 8:610982. (42) Li, Y., and Z. Wen, 2021: The influence of interdecadal changes in boreal winter teleconnections around the 1980s on planetary waves and stratospheric sudden warmings. Journal of Geophysical Research: Atmospheres, 126, e2021JD035341. (43) Li, Y., and Z. Wen, 2021: Influence of tropical convective enhancement in Pacific on the trend of stratospheric sudden warmings in Northern Hemisphere. Climate Dynamics. (44) Chen, G., W.-C. Wang, C.-T. Cheng, and H.-H. Hsu, 2021: Extreme snow events along the coast of the northeast United States: Potential changes due to global warming. Journal of Climate, 34, 2337-2353. (45) Yuan, J., and R. E. Kopp, 2021: Emulating Ocean Dynamic Sea Level by Two‐Layer Pattern Scaling. Journal of Advances in Modeling Earth Systems, 13, e2020MS002323. (46) Wang, G., W. Leng, S. Jiang, and B. Cao, 2021: Long-Term Variation in Wintertime Atmospheric Diffusion Conditions Over the Sichuan Basin. Frontiers in Earth Science, 9:763504. (47) Xie X., R. Lyu, Y. Wang, G. Zhou, Y. Peng, T. Cheng, Q. He, W. Gao, X. Tan, R. Zhang, 2021: Effects of shipping emissions on cloud physical properties over coastal areas near Shanghai. Science of The Total Environment, 753, 141742. (48) You, Q., and Coauthors, 2021: Warming amplification over the Arctic Pole and Third Pole: Trends, mechanisms and consequences. Earth-Science Reviews, 217, 103625. (49) You, Q., Z. Cai, F. Wu, Z. Jiang, N. Pepin, and S. S. Shen, 2021: Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Climate Dynamics, 57, 17-35. (50) Cai, Z., Q. You, F. Wu, H. W. Chen, D. Chen, and J. Cohen, 2021: Arctic warming revealed by multiple CMIP6 models: evaluation of historical simulations and quantification of future projection uncertainties. Journal of Climate, 34, 4871-4892. (51) Zhang, Y., Q. You, G. Mao, C. Chen, X. Li, and J. Yu, 2021: Flash Drought Characteristics by Different Severities in Humid Subtropical Basins: A Case Study in the Gan River Basin, China. Journal of Climate, 34, 7337-7357. (52) Cheng, J., and Coauthors, 2021: Increasing cloud water resource in a warming world. Environmental Research Letters, 16, 124067. (53) Zhao, C., D. Zheng, Y. Zhang, X. Liu, Y. Zhang, W. Yao, and W. Zhang, 2021: Turbulence Characteristics of Thunderstorms Before the First Flash in Comparison to Non‐Thunderstorms. Geophysical Research Letters, 48, e2021GL094821. (54) Li, Y., Y. Zhang, Y. Zhang, and P. R. Krehbiel, 2021: A new method for connecting the radiation sources of lightning discharge extension channels. Earth and Space Science, 8, e2021EA001713. (55) 许钰佳, 陈长霖, 彭旭东, 刘磊, 2021: 西北太平洋热带气旋路径预报偏差分析.海洋学研究, 39, 1-11. (56) 高艳红, 刘伟,曾礼, 2021: 陆面过程高分辨率模拟的不确定性. 高原气象, 40, 1364-1376. (57) 高艳红, 张萌, 刘伟, 2021: 陆地水资源变化对变暖的响应及其影响因素. 大气科学学报, 44, 325-335. (58) 游庆龙, 康世昌, 李剑东, 陈德亮, 翟盘茂, 吉振明, 2021: 青藏高原气候变化若干前沿科学问题. 冰川冻土, 43, 885-901. (59) 蔡子怡, 游庆龙, 陈德亮, 张若楠, 陈金雷, 康世昌, 2021: 北极快速增暖背景下冰冻圈变化及其影响研究综述.冰川冻土, 43, 902-916. (60) 程敬雅, 游庆龙, 蔡淼, 2021: 全球云水量气候分布及变化趋势特征分析. 气候与环境研究, 26, 541-555. 2020 (1)Chen Z*, Chen D, Zhao C, et al. Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism. Environment International, 2020, 139: 105558. (2)Cao B*, Wang X, Ning G, et al. Factors influencing the boundary layer height and their relationship with air quality in the Sichuan Basin, China. Science of The Total Environment, 2020: 138584. (3)Chang, L., Zhiwei Wu* and J. Xu 2020: A comparison of haze pollution variability in China using haze indices based on observations. Sci. Total Environ., DOI: 10.1016/j.scitotenv.2020.136929. (4)Chang, L., Zhiwei Wu* and J. Xu 2020: Potential impacts of the Southern Hemisphere polar vortices on central-eastern China haze pollution during boreal early winter. Climate Dyn., DOI: 10.1007/s00382-020-05294-3. (5)Chen,L.,Dong,C.,Wang,G.(2020).GOCI-Observed Chlorophyll Belts Associated With Sea-Surface Fronts in the East China Sea. Ieee Geoscience and Remote Sensing Letters. doi:10.1109/lgrs.2019.2947175. (6)D. Li*, J. Yuan*, and R. E. Kopp (2020). Escalating Global Exposure to Compound Heat-Humidity Extremes with Warming. Environmental Research Letters, 15(6). https://doi.org/10.1088/1748-9326/ab7d04 (7)Dou, J., Zhiwei Wu* and J. Li 2020: The strengthened relationship between the Yangtze River Valley summer rainfall and the Southern Hemisphere annular mode in recent decades. Climate Dyn., 54(3), 1607-1624. (8)Fangying Wu, Qinglong You*, Ziyin Zhang, Ling Zhang. Changes and uncertainties of surface mean temperature over China under global warming of 1.5°C and 2°C. International Journal of Climatology, 2020, DOI: 10.1002/joc.6694. SCI (9)Feng, J. and X. G. Wang*, 2020: Impact of increasing horizontal and vertical resolution of the hurricane WRF model on the analysis and prediction of Hurricane Patricia (2015). Mon. Wea. Rev., DOI: 10.1175/MWR-D-20-0144.1 (10)Feng, J.*, Z. Toth, and M. Pena, 2020: Partition of Analysis and Forecast Error Variance into Growing and Decaying Components. Quart. J. Roy. Meteor. Soc., 146(728), 1302-1321. (11)Feng, J., J. Zhang*, Z. Toth, M. Pena, and S. Ravela, 2020: A New Measure of Ensemble Central Tendency. Wea. Forecasting, 35(3), 879–889. (12)Feng, J., X. G. Wang*, and J. Poterjoy, 2020: A comparison of two local moment matching nonlinear filters: local particle filter (LPF) and local nonlinear ensemble transform filter (LNETF). Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-19-0368.1. (13)Gao Y. *, F. Chen, Gonzalo Miguez-Macho, X. Li, 2020, Understanding precipitation recycling over the Tibetan Plateau using tracer analysis with WRF, Climate Dynamics, https://doi.org/10.1007/s00382-020-05426-9 (14)Gao Y. *, F. Chen, Y. Jiang, 2020, Evaluation of the convection permission simulated precipitation in the Tibetan Plateau and its influences on snow cover fraction simulation, J. Hydrometeor., 21:1531-1548 (15)Guo, Y., Z. Wen*, Y. Tan, and X. Li, 2020: Plausible causes of the interdecadal change of the North Pacific teleconnection pattern in boreal spring around the late 1990s. Clim. Dyn., 55, 1427–1442, doi:10.1007/s00382-020-05334-y. (16)Guo, Y., Z. Wen, and X. Li, 2020: Interdecadal change in the principal mode of winter–spring precipitation anomaly over tropical Pacific around the late 1990s. Clim. Dyn., 54, 1023–1042, doi:10.1007/s00382-019-05042-2. (17)J. Yuan*, and R. E. Kopp (2020). Emulating ocean dynamic sea level by two-layer pattern scaling. Journal of Advances in Modeling Earth Systems. Under review. (18)J. Yuan*, M. I. Stein, and R. E. Kopp (2020). The evolving distribution of relative humidity conditional upon daily maximum temperature. Journal of Geophysical Research-Atmospheres. 125(19), https://doi.org/10.1029/2019JD032100 (19)Jiang Y., F. Chen, Y. Gao *, C. He, M. Barlage, W. Huang, 2020, Assessment of uncertainty sources in snow cover simulation in the Tibetan plateau, Journal of Geophysical Research: Atmospheres, 125, e2020JD032674, https://doi.org/10.1029/2020JD032674 (20)Jin Zheng, Qinglong You*, Mu Mu, Guodong Sun, Nick Pepin. Fingerprints of anthropogenic influences on vegetation change over the Tibetan Plateau from an eco-hydrological diagnosis. Geophysical Research Letters, 2020, 47:e2020GL087842. SCI (21)Juju Liu, Qinglong You*. A diagnosis of the interannual variation of the summer hydrometeor based on ERA-interim over Eastern China. Atmospheric Research, 2020, 231:104654. SCI (22)Lei Yadong, Feng Zhang*, Lijuan Miao, Qiu-Run Yu, Mingkeng Duan, Klaus Fraedrich, Zifeng Yu, 2020: Potential impacts of future reduced aerosols on internal dynamics characteristics of precipitation based on model simulations over southern China. Physica A: Statistical Mechanics and its Applications, 545.123808:1-13.DOI:https://doi.org/10.1016/j.physa.2019.123808 (23)Li Wenwen,, Feng Zhang*, Yueyue Yu, Hironobu Iwabuchi, Zhongping Shen, Guoyin Wang, Yijun Zhang, 2020: The semi-diurnal cycle of deep convective systems over Eastern China and its surrounding seas in summer based on an automatic tracking algorithm. Climate Dynamics, DOI: 10.1007/s00382-020-05474-1 (24)Li Wenwen, Feng Zhang*, Yi-Ning Shi, Hironobu Iwabuchi, Mingwei Zhu, Jiangnan Li, Wei Han, Husi Letu, and Hiroshi Ishimoto, 2020: Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres. Optics Express, 28, 25730-25749. DOI:https://doi.org/10.1364/OE.400130 (25)Ling Z., Wang, Y., Wang,G., He,H. (2020). Impact of Intraseasonal Oscillations on the Activity of Tropical Cyclones in Summer Over the South China Sea: Nonlocal Tropical Cyclones. Frontiers in Earth Science. doi:10.3389/feart.2020.609776. (26)Liu MeiCheng, Dingzhu Hu, Feng Zhang, 2020: Connections between Stratospheric Ozone Concentrations over the Arctic and Sea Surface Temperatures in the North Pacific. Journal of Geophysical Research: Atmospheres, (4):1-18. DOI:https://doi.org/10.1029/2019JD031690 (27)Lu, Z.,Wang,G.,Shang, X.(2020). Strength and Spatial Structure of the Perturbation Induced by a Tropical Cyclone to the Underlying Eddies. Journal of Geophysical Research: Oceans ,125, 5.doi: 10.1029/2020JC016097. (28)Miao Lijuan, Suyuan Li, Feng Zhang*, Tiexi Chen, Yunpeng Shan, and Yushan Zhang, 2020: Future drought in the drylands of Asia under the 1.5ºC and 2.0ºC warming scenarios, Earth Future, DOI: 10.1029/2019EF001337 (29)Ni,Q., Zhai X.,Wang,G., Marshall D. (2020). Random Movement of Mesoscale Eddies in the Global Ocean. Journal Of Physical Oceanography, 50:2341-2356 (30)Ni,Q., Zhai, X.,Wang,G., & Hughes,C.W.(2020). Widespread mesoscale dipoles in the global ocean. Journal of Geophysical Research: Oceans, 125, e2020JC016479. doi:10.1029/2020JC016479 (31)Qinglong You*, Deliang Chen, Fangying Wu, Nick Pepin, Ziyi Cai, Bodo Ahrens, Zhihong Jiang, Zhiwei Wu, Shichang Kang, Amir AghaKouchak. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives. Earth-Science Reviews, 2020, 210:103349. SCI (32)Qinglong You*, Fangying Wu, Hongguo Wang, Zhihong Jiang, Nick Pepin, Shichang Kang. Projected changes in snow water equivalent over the Tibetan Plateau under global warming of 1.5°C and 2°C. Journal of Climate, 2020, 33: 5141-5154. SCI (33)Qinglong You*, Fangying Wu, Liucheng Shen, Nick Pepin, Zhihong Jiang, Shichang Kang. Tibetan Plateau amplification of climate extremes under global warming of 1.5°C, 2°C and 3°C. Global and Planetary Change, 2020, 192:103261. SCI (34)Qinglong You*, Tao Wu, Liuchen Shen, Nick Pepin, Ling Zhang, Zhihong Jiang, Zhiwei Wu, Shichang Kang, Amir AghaKouchak. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Science Reviews, 2020, 201:103043. SCI (35)Safi Ullah, Qinglong You*, Yuqing Zhang, Asher Samuel Bhatti, Waheed Ullah, Daniel Fiifi Tawia Hagan, Amjad Ali, Gohar Ali, Mushtaq Ahmad Jan, Shah Nawaz Khan, Asif Ali. Evaluation of CMIP5 models and projected changes in temperatures over South Asia under global warming of 1.5°C, 2°C and 3°C. Atmospheric Research, 2020, 246:105122. SCI (36)Shi,Q.,Wang,G.(2020).Observed Warm Filaments from the Kuroshio Associated with Mesoscale Eddies. Remote Sensing, 12, 3090; doi:10.3390/rs12183090 (37)Sun, J., Wang,G., Xiong, X. et al. (2020). Impact of warm mesoscale eddy on tropical cyclone intensity. Acta Oceanol. Sin.,39 (8) 1-13. (38)Wang X*, Zhang R. Effects of atmospheric circulations on the interannual variation in PM2.5 concentrations over the Beijing-Tianjin-Hebei region in 2013-2018. Atmospheric Chemistry and Physics, 2020, 20(13): 7667-7682. (39)Wang X*, Zhang R. How Does Air Pollution Change during COVID-19 Outbreak in China? Bulletin of the American Meteorological Society, 2020: 1-12. (40)Wang. L., S. C. Hardiman, P. E. Bett, R. Comer, C. Kent, and A. A. Scaife (2020), What chance of a sudden stratospheric warming in the southern hemisphere? Environ.Res. Lett., 15, 104038. (41)Wen, Q., and *H. Yang, 2020: Investigating the role of the Tibetan Plateau in the formation of Pacific meridional overturning circulation. J. Climate, 33, doi: 10.1175/JCLI-D-19-0206.1. (42)Wen, Q., K. Doos, Z. Lu, Z. Han, and *H. Yang, 2020: Investigating the role of the Tibetan Plateau in ENSO variability. J. Climate, 33, doi: 10.1175/JCLI-D-19-0422.1. (43)Wu You, Feng Zhang*, Kun Wu, Min. Min,Wenwen Li, Renqiang Liu, 2020: Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia. Sensors,20, 2394.DOI: https://doi.org/10.3390/s20082394 (44)Xiao Haixia, Feng Zhang*, Lijuan Miao, X. San Liang, Kun Wu and Renqiang Liu, 2020: Long-term trends in Arctic surface temperature and potential causality over the last 100years. Climate Dynamics, 55,1443–1456. DOI:https://doi.org/10.1007/s00382-020-05330-2 (45)Xu Tang, Kyoji Sassa, Guy Brasseur, et al. 2020, Collaboration in MHEWS through an Integrated Way, Journal of the International Consortium on Landslides. Springers, Accepted. (46)Xue Dan, Feng Zhang*, Yi-Ning Shi, Hironobu Iwabuchi, Jiangnan Li, Shuai Hu, Wei Han, 2020: The δ -six-stream spherical harmonic expansion adding method for solar radiative transfer. Journal of Quantitative Spectroscopy and Radiative Transfer, 243.106818:1-17 DOI:https://doi.org/10.1016/j.jqsrt.2019.106818 (47)Yang Quan, Feng Zhang*, Hua Zhang, Zhili Wang, Hironobu Iwabuchi, Jiangnan Li, 2020: Impact of δ-Four-Stream Radiative Transfer Scheme on global climate model simulation. Journal of Quantitative Spectroscopy and Radiative Transfer,243.106800. DOI:https://doi.org/10.1016/j.jqsrt.2019.106800:1-13 (48)Yang, H.*, and Q. Wen, 2020: Investigating the role of the Tibetan Plateau in the formation of Atlantic meridional overturning circulation. J. Climate, 33, doi: 10.1175/JCLI-D-19-0205.1. (49)Yang, H.*, X. Shen, J. Yao and Q. Wen, 2020: Portraying the impact of the Tibetan Plateau on global climate. J. Climate, 33, doi: 10.1175/JCLI-D-18-0734.1. (50)Yang, X.,Wang,G., Keenlyside,N.(2020). The Arctic sea ice extent change connected to Pacific decadal variability. The Cryosphere, 14(2),693-708.doi: 10.5194/tc-14-693-2020. (51)Yupin Yan, Qinglong You*, Fangying Wu, Pepin Nick, Shichang Kang. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau. Climate Dynamics, 2020, 55:2405-2419. SCI (52)Zhang Feng, Qiu-Run Yu, Jia-Li Mao, Chen Dan, Yanyu Wang, Qianshan He, Tiantao Cheng, Chunhong Chen, Dongwei Liu, Yanping Gao, 2020: Possible mechanisms of summer cirrus clouds over the Tibetan Plateau.Atmospheric Chemistry and Physics,DOI: https://doi.org/10.5194/acp-20-1-2020 (53)Zhang Jingxin, Zhen Wang, Feng Zhang, Haiyang Gao, Jinhu Wang, Shengcheng Cui, 2020: A novel multiple small-angle scattering framework for interpreting anisotropic polarization pattern of lidar returns from water clouds. Journal of Quantitative Spectroscopy and Radiative Transfer, 242.106794:1-12 DOI:https://doi.org/10.1016/j.jqsrt.2019.106794 (54)Zhang, P., Zhiwei Wu*, J. Li and Z. Xiao 2020: Seasonal prediction of the northern and southern temperature modes of the East Asian winter monsoon: the importance of the Arctic sea ice. Climate Dyn., 54(7), 3583-3597. (55)Zhang, R. N.*, J. A. Screen, 2020: Non-uniform winter atmospheric response to Arctic sea ice variation. Geophysical Research Letters. (56)Zhang, R. N., C. Sun*, J. Zhu, R. H. Zhang, and W. Li, 2020: Increased European heat waves in recent decades in response to shrinking Arctic sea ice and Eurasian snow cover. npj Climate and Atmospheric Science 3, 7. https://doi.org/10.1038/s41612-020-0110-8. (57)Zhang, R., Y. Guo*, Z. Wen, and R. Wu, 2020: Distinct patterns of sea surface temperature anomaly in the South Indian Ocean during austral autumn. Clim. Dyn., 54, 2663–2682, doi:10.1007/s00382-020-05135-3. (58)Zhao, J. W., R.-F. Zhan*, and Y. Wang, 2020: Different responses of tropical cyclone tracks density in the western North Pacific and North Atlantic to two distinct SST warming patterns. Geophysical Research Letters, 47(7), doi: 10.1029/2019GL086923. (59)Zhao, J. W.+, R.-F. Zhan+, and Y. Wang, S. P. Xie, and Q. Wu, 2020: Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Science Advances, 6(41): p. eaba6813, doi: 10.1126/sciadv.aba6813 (60)Zhen Z., Y. Guo, and Z. Wen*, 2020: Inter-decadal change in the relationship between the Bay of Bengal summer monsoon and South China Sea summer monsoon onset. Front. Earth Sci., doi: 10.3389/feart.2020.610982. (61)Zhou M., Wang,G., Liu W., and Chen C.(2020). Variability of the Observed Deep Western Boundary Current in the South China Sea. Journal of Physical Oceanography, 10,2953-2963 (62)Zhou, Juan, Zhiyan Zuo*, Qiong He. 2020. Influence of Eurasian spring snowmelt on surface air temperature during the late spring-early summer transition season. Journal of Climate. (conditional accepted) (63)Zhou, Juan, Zhiyan Zuo*, Xinyao Rong, Jun Wen. 2020. Role of May surface temperature over eastern China in East Asian summer monsoon circulation and precipitation. International Journal of Climatology. doi: 10.1002/joc.6588 (64)Zhou, Juan, Zhiyan Zuo*, Xinyao Rong. 2020: Comparison of the effects of soil moisture and El Nino on summer precipitation in eastern China. SCIENCE CHINA Earth Sciences. 63(2), 267-278. doi: 10.1007/s11430-018-9362-6 (周娟, 左志燕*,容新尧. 2020: 中国东部土壤湿度异常和厄尔尼诺对中国东部夏季降水的作用比. 50(1), 149-160中国科学: 地球科学. doi: 10.1360/N072018-00329) (65)Zhu, Y., Z. Wen*, Y. Guo, R. Chen, X. Li, and Y. Qiao, 2020: The characteristics and possible growth mechanisms of the quasi-biweekly Pacific–Japan teleconnection in Boreal Summer. Clim. Dyn., 55, 3363–3380, doi:10.1007/s00382-020-05448-3. (66)汤绪. 2020. 一场疫情,将全球化带向何方. 半月谈. 9: 84-86. (67)王桂华, 田纪伟 (2020). 南海深层水的来龙去脉,科技导报,38(18), 21-25 (68)王晓妍 , 赵德峰 , 欧阳慧灵 , 张人禾. 空气质量监测、分析、预报国际研究计划及前沿问题. 气候变化研究进展 , 2020, 16 (1): 130-132. (69)武洁,高艳红*,潘永洁,蒋盈沙,李哲,马佳宁, 2020, 青藏高原中东部地区土壤湿模拟性能评估及误差分析,地球物理学报,63(6): 2184-2198 2019 (1)Bao, X. W.; Wu, Liguang; Tang, B.; Ma, L. M.; Wu, D.; Tang, J.; Chen, H. J.; Wu, L. Y. (2019). Variable Raindrop Size Distributions in Different Rainbands Associated With Typhoon Fitow (2013). Journal of Geophysical Research-Atmospheres. (2)Bao, Y. T.; You, Q. L. (2019). How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau? Climate Dynamics, 53(1-2): 353-370. (3)Cao, DanDan; Wu, QiGang; Hu, AiXue; Yao, YongHong; Liu, ShiZuo; Schroeder, Steven R.; Yang, FuCheng. (2019). Linear and nonlinear winter atmospheric responses to extreme phases of low frequency Pacific sea surface temperature variability. Climate Dynamics, 52(1-2): 49-68. doi:10.1007/s00382-018-4127-1 (4)Chang, Yunhua; Zhang, Yan-Lin; Li, Jiarong; Tian, Chongguo; Song, Linlin; Zhai, Xiaoyao; Zhang, Wenqi; Huang, Tong; Lin, Yu-Chi; Zhu, Chao; Fang, Yunting; Lehmann, Moritz F.; Chen, Jianmin. (2019). Isotopic constraints on the atmospheric sources and formation of nitrogenous species in clouds influenced by biomass burning. Atmospheric Chemistry and Physics, 19(19): 12221-12234. doi:10.5194/acp-19-12221-2019 (5)Chen, C. L.; Wang, G. H.; Xie, S. P.; Liu, W. (2019a). Why Does Global Warming Weaken the Gulf Stream but Intensify the Kuroshio? Journal of Climate, 32(21): 7437-7451. (6)Chen, ChangLing; Liu, Wei; Wang, GuiHua. (2019b). Understanding the Uncertainty in the 21st Century Dynamic Sea Level Projections: The Role of the AMOC. Geophysical Research Letters, 46(1): 210-217. doi:10.1029/2018gl080676 (7)Chen, F. H.; Chen, J. H.; Huang, W.; Chen, S. Q.; Huang, X. Z.; Jin, L. Y.; Jia, J.; Zhang, X. J.; An, C. B.; Zhang, J. W.; Zhao, Y.; Yu, Z. C.; Zhang, Renhe; Liu, J. B.; Zhou, A. F.; Feng, S. (2019c). Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Science Reviews, 192: 337-354. (8)Chen, L.; Li, Q.; Wu, D.; Sun, H.; Wei, Y. Q.; Ding, X.; Chen, H.; Cheng, T. T.; Chen, J. M. (2019d). Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Science of the Total Environment, 674: 179-188. (9)Chen, L.; Pryor, S. C.; Wang, H.; Zhang, R. H. (2019e). Distribution and Variation of the Surface Sensible Heat Flux Over the Central and Eastern Tibetan Plateau: Comparison of Station Observations and Multireanalysis Products. Journal of Geophysical Research-Atmospheres, 124(12): 6191-6206. (10)Chen, LyuWen; Lyu, WeiTao; Zhang, YiJun; Ma, Ying; Qi, Qi; Wu, Bin; Zhu, YaNan. (2019f). Correlated luminosity and magnetic field peaks produced by canton tower-strokes. Atmospheric Research, 218: 59-69. doi:10.1016/j.atmosres.2018.11.008 (11)Chen, R. D.; Wen, Z. P.; Lu, R. Y. (2019g). Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmospheric and Oceanic Science Letters, 12(4): 238-245. doi:10.1080/16742834.2019.1611170 (12)Chen, RuiDan; Wen, ZhiPing; Lu, RiYu; Wang, ChunZai. (2019h). Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the Western Tropical Pacific Warming. Advances in Atmospheric Sciences, 36(5): 465-478. doi:10.1007/s00376-018-8177-4 (13)Chen, Z. F.; Zhang, Y.; Zheng, D.; Zhang, Y. J.; Fan, X. P.; Fan, Y. F.; Xu, L. T.; Lyu, W. T. (2019i). A Method of Three-Dimensional Location for LFEDA Combining the Time of Arrival Method and the Time Reversal Technique. Journal of Geophysical Research-Atmospheres, 124(12): 6484-6500. (14)Chen, Z. S.; Du, Y.; Wen, Z. P.; Wu, R. G.; Xie, S. P. (2019j). Evolution of South Tropical Indian Ocean Warming and the Climatic Impacts Following Strong El Nino Events. Journal of Climate, 32(21): 7329-7347. (15)Cui, Lulu; Li, Rui; Fu, Hongbo; Li, Qing; Zhang, Liwu; George, Christian; Chen, Jianmin. (2019). Formation features of nitrous acid in the offshore area of the East China Sea. Science of the Total Environment, 682: 138-150. doi:10.1016/j.scitotenv.2019.05.004 (16)Dai, G. K.; Mu, M.; Jiang, Z. N. (2019). Evaluation of the Forecast Performance for North Atlantic Oscillation Onset. Advances in Atmospheric Sciences, 36(7): 753-765. (17)Ding, S. Y.; Chen, W.; Graf, H. F.; Chen, Z.; Ma, T. J. (2019a). Quasi-stationary extratropical wave trains associated with distinct tropical Pacific seasonal mean convection patterns: observational and AMIP model results. Climate Dynamics, 53(3-4): 2451-2476. doi:10.1007/s00382-019-04882-2 (18)Ding, Xiang; Li, Qing; Wu, Di; Liang, Yingguang; Xu, Xianmang; Xie, Guangzhao; Wei, Yaqi; Sun, Hao; Zhu, Chao; Fu, Hongbo; Chen, Jianmin. (2019b). Unexpectedly Increased Particle Emissions from the Steel Industry Determined by Wet/Semidry/Dry Flue Gas Desulfurization Technologies. Environmental science & technology, 53(17): 10361-10370. doi:10.1021/acs.est.9b03081 (19)Du, ChengTian; Kong, LingDong; Zhanzakova, Assiya; Tong, SongYing; Yang, Xin; Wang, Lin; Fu, HongBo; Cheng, TianTao; Chen, JianMin; Zhang, ShiCheng. (2019). Impact of adsorbed nitrate on the heterogeneous conversion of SO2 on alpha-Fe2O3 in the absence and presence of simulated solar irradiation. Science of the Total Environment, 649: 1393-1402. doi:10.1016/j.scitotenv.2018.08.295 (20)Fan, X. P.; Zhang, Y. J.; Yin, Q. Y.; Zhang, Y.; Zheng, D. (2019). Characteristics of a multi-stroke bolt from the blue lightning-type that caused a fatal disaster. Geomatics Natural Hazards & Risk, 10(1): 1425-1442. (21)Fang, X. H.; Zheng, F.; Liu, Z. Y.; Zhu, J. (2019). Decadal Modulation of ENSO Spring Persistence Barrier by Thermal Damping Processes in the Observation. Geophysical Research Letters, 46(12): 6892-6899. (22)Gao, M.; Sherman, P.; Song, S. J.; Yu, Y. Y.; Wu, Z. W.; McElroy, M. B. (2019a). Seasonal prediction of Indian wintertime aerosol pollution using the ocean memory effect. Science Advances, 5(7). (23)Gao, R. L.; Zhang, R. H.; Wen, M.; Li, T. R. (2019b). Interdecadal changes in the asymmetric impacts of ENSO on wintertime rainfall over China and atmospheric circulations over western North Pacific. Climate Dynamics, 52(12): 7525-7536. (24)Ge, Jing; You, QingLong; Zhang, YuQing. (2019). Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmospheric Research, 218: 364-371. doi:10.1016/j.atmosres.2018.12.018 (25)Guo, Y. Y.; Wen, Z. P.; Li, X. Z. (2019a). Interdecadal change in the principal mode of winter-spring precipitation anomaly over tropical Pacific around the late 1990s. Climate Dynamics. (26)Guo, YuanYuan; Wen, ZhiPing; Chen, RuiDan; Li, XiuZhen; Yang, XiuQun. (2019b). Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection. Climate Dynamics, 52(1-2): 401-416. doi:10.1007/s00382-018-4149-8 (27)He, Q.; Ma, J.; Zheng, X.; Yan, X.; Vömel, H.; Wienhold, F. G.; Gao, W.; Liu, D.; Shi, G.; Cheng, T. (2019a). Observational evidence of particle hygroscopic growth in the upper troposphere–lower stratosphere (UTLS) over the Tibetan Plateau. Atmos. Chem. Phys., 19(13): 8399-8406. doi:10.5194/acp-19-8399-2019 (28)He, QianShan; Zheng, XiangDong; Li, Jian; Gao, Wei; Wang, YanYu; Cheng, TianTao; Pu, JiaWei; Liu, Jie; Li, ChengCai. (2019b). The role of ASM on the formation and properties of cirrus clouds over the Tibetan Plateau. Tellus Series B-Chemical and Physical Meteorology, 71: 13. doi:10.1080/16000889.2019.1577070 (29)Hu, Y.; Wen, M.; Li, L.; Zhang, R. H. (2019). Climatic characteristics of East Asian tropical monsoon depressions. Theoretical and Applied Climatology, 138(1-2): 399-415. (30)Huang, K.; Ren, H. L.; Liu, X. W.; Ren, P. F.; Wei, Y. T.; Mu, Mu. (2019a). Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback. Atmosphere, 10(5). (31)Huang, Sihua; Wen, Zhiping; Chen, Zesheng; Li, Xiuzhen; Chen, Ruidan; Guo, Yuanyuan. (2019b). Interdecadal change in the relationship between the tropical easterly jet and tropical sea surface temperature anomalies in boreal summer. Climate Dynamics, 53(3-4): 2119-2131. doi:10.1007/s00382-019-04801-5 (32)Ji, Y.; Li, Y. J.; Wu, Z. W. (2019). BOREAL SUMMER CLIMATOLOGY AND STANDARD DEVIATION IN GLOBAL LOW-FREQUENCY STREAMFUNCTION FIELDS AT 200 hPa. Journal of Tropical Meteorology, 25(2): 153-161. (33)Lee, Hyun-Ju; Seo, Kyong-Hwan.; Wu, QiGang; Lee, Seoung-Soo; Park, Hyo-Seok. (2019). Combined Effect of the Madden-Julian Oscillation and Arctic Oscillation on Cold Temperature Over Asia. Asia-Pacific Journal of Atmospheric Sciences, 55(1): 75-89. doi:10.1007/s13143-018-0091-2 (34)Li, J. P.; Li, X.; Li, X.; Chen, L.; Jin, L. K. (2019a). Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures. Atmosphere, 10(8). (35)Li, Jiao; Ding, RuiQiang; Wu, ZhiWei; Zhong, QuanJia; Li, BaoSheng; Li, JianPing. (2019b). Inter-decadal change in potential predictability of the East Asian summer monsoon. Theoretical and Applied Climatology, 136(1-2): 403-415. doi:10.1007/s00704-018-2482-9 (36)Li, JiaXun; Wang, GuiHua; Xue, HuiJie; Wang, HuiZan. (2019c). A simple predictive model for the eddy propagation trajectory in the northern South China Sea. Ocean Science, 15(2): 401-412. doi:10.5194/os-15-401-2019 (37)Li, L.; Zhang, R. H.; Wen, M. (2019d). Large-scale backgrounds and crucial factors modulating the eastward moving speed of vortices moving off the Tibetan Plateau. Climate Dynamics, 53(3-4): 1711-1722. (38)Li, L.; Zhang, R. H.; Wen, M.; Duan, J. P.; Qi, Y. J. (2019e). Characteristics of the Tibetan Plateau vortices and the related large-scale circulations causing different precipitation intensity. Theoretical and Applied Climatology, 138(1-2): 849-860. (39)Li, L.; Zhang, R. H.; Wen, M.; Duan, J. P.; Qi, Y. J. (2019f). Effects of the atmospheric dynamic and thermodynamic fields on the eastward propagation of Tibetan Plateau vortices. Tellus Series a-Dynamic Meteorology and Oceanography, 71(1). (40)Li, Lun; Zhang, Renhe; Wen, Min; Duan, Jianping. (2019g). Development and eastward movement mechanisms of the Tibetan Plateau vortices moving off the Tibetan Plateau. Climate Dynamics, 52(7): 4849-4859. doi:10.1007/s00382-018-4420-z (41)Li, Rui; Fu, Hongbo; Cui, Lulu; Li, Junlin; Wu, Yu; Meng, Ya; Wang, Yutao; Chen, Jianmin. (2019h). The spatiotemporal variation and key factors of SO2 in 336 cities across China. Journal of Cleaner Production, 210: 602-611. doi:10.1016/j.jclepro.2018.11.062 (42)Li, Rui; Wang, ZhenZhen; Cui, LuLu; Fu, HongBo; Zhang, LiWu; Kong, LingDong; Chen, WeiDong; Chen, JianMin. (2019i). Air pollution characteristics in China during 2015-2016: Spatiotemporal variations and key meteorological factors. Science of the Total Environment, 648: 902-915. doi:10.1016/j.scitotenv.2018.08.181 (43)Li, X. X.; Wu, Z. W.; Li, Y. J. (2019j). A link of China warming hiatus with the winter sea ice loss in Barents-Kara Seas. Climate Dynamics, 53(5-6): 2625-2642. (44)Li, Xin; You, Qinglong; Ren, Guoyu; Wang, Suyan; Zhang, Yuqing; Yang, Jianling; Zheng, Guangfen. (2019k). Concurrent droughts and hot extremes in northwest China from 1961 to 2017. International Journal of Climatology, 39(4): 2186-2196. doi:10.1002/joc.5944 (45)Li, XiuZhen; Wen, ZhiPing; Chen, DeLinag; Chen, ZeSheng. (2019l). Decadal Transition of the Leading Mode of Interannual Moisture Circulation over East Asia-Western North Pacific: Bonding to Different Evolution of ENSO. Journal of Climate, 32(2): 289-308. doi:10.1175/jcli-d-18-0356.1 (46)Li, Y.; Mu, L.; Wang, Q. Y.; Ren, G. Y.; You, Q. L. (2019m). High-quality sea surface temperature measurements along coast of the Bohai and Yellow Seas in China and their long-term trends during 1960-2012. International Journal of Climatology. (47)Li, Y.; Ren, G. Y.; Wang, Q. Y.; You, Q. L. (2019n). More extreme marine heatwaves in the China Seas during the global warming hiatus. Environmental Research Letters, 14(10). (48)Liang, P.; Mu, Mu; Wang, Q.; Yang, L. N. (2019). Optimal Precursors Triggering the Kuroshio Intrusion Into the South China Sea Obtained by the Conditional Nonlinear Optimal Perturbation Approach. Journal of Geophysical Research-Oceans, 124(6): 3941-3962. (49)Ling, Yan; Wang, YanYu; Duan, JunYan; Xie, Xin; Liu, YueHui; Peng, YaRong; Qiao, LiPing; Cheng, TianTao; Lou, ShengRong; Wang, HongLi; Li, Xiang; Xing, XuHuang. (2019). Long-term aerosol size distributions and the potential role of volatile organic compounds (VOCs) in new particle formation events in Shanghai. Atmospheric Environment, 202: 345-356. doi:10.1016/j.atmosenv.2019.01.018 (50)Liu, Yuehui; Wang, Hongli; Jing, Shengao; Gao, Yaqin; Peng, Yarong; Lou, Shengrong; Cheng, Tiantao; Tao, Shikang; Li, Li; Li, Yingjie; Huang, Dandan; Wang, Qian; An, Jingyu. (2019). Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport. Atmospheric Environment, 215: 116902. doi:https://doi.org/10.1016/j.atmosenv.2019.116902 (51)Luo, Rui; Wu, ZhiWei; Zhang, Peng; Dou, Juan. (2019). Potential Influence of a Developing La Nina on the Sea-Ice Reduction in the Barents-Kara Seas. Atmosphere-Ocean: 13. doi:10.1080/07055900.2019.1587375 (52)Lyu, M. X.; Jiang, X. N.; Wu, Z. W. (2019a). A Cautionary Note on the Long-term Trend in Activity of the Madden-Julian Oscillation During the Past Decades. Geophysical Research Letters. (53)Lyu, M. X.; Wu, Z. W.; Shi, X. H.; Wen, M. (2019b). Distinct impacts of the MJO and the NAO on cold wave amplitude in China. Quarterly Journal of the Royal Meteorological Society, 145(721): 1617-1635. doi:10.1002/qj.3516 (54)McFiggans, Gordon; Mentel, Thomas F.; Wildt, Jürgen; Pullinen, Iida; Kang, Sungah; Kleist, Einhard; Schmitt, Sebastian; Springer, Monika; Tillmann, Ralf; Wu, Cheng; Zhao, Defeng; Hallquist, Mattias; Faxon, Cameron; Le Breton, Michael; Hallquist, Åsa M.; Simpson, David; Bergström, Robert; Jenkin, Michael E.; Ehn, Mikael; Thornton, Joel A.; Alfarra, M. Rami; Bannan, Thomas J.; Percival, Carl J.; Priestley, Michael; Topping, David; Kiendler-Scharr, Astrid. (2019). Secondary organic aerosol reduced by mixture of atmospheric vapours. Nature, 565(7741): 587-593. doi:10.1038/s41586-018-0871-y (55)Miao, R.; Wen, M.; Zhang, R. H.; Li, L. (2019). The influence of wave trains in mid-high latitudes on persistent heavy rain during the first rainy season over South China. Climate Dynamics, 53(5-6): 2949-2968. (56)Polvani, L.M., L. Wang*, M. Abalos, N. Butchart, M. Chipperfield, M. Deushi, S. Dhomse, P. Jöckel, D. Kinnison, M. Michou, O. Morgenstern, L. Oman, D. Plummer, and K. Stone (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment. J. Geophys. Res. Atmos., 124(13), 6669-6680. (57)Peng, J.; Muller, J. P.; Blessing, S.; Giering, R.; Danne, O.; Gobron, N.; Kharbouche, S.; Ludwig, R.; Muller, B.; Leng, G. Y.; You, Q. L.; Duan, Z.; Dadson, S. (2019). Can We Use Satellite-Based FAPAR to Detect Drought? Sensors, 19(17). (58)Qi, Y. J.; Li, T.; Zhang, R. H.; Chen, Y. (2019a). Interannual relationship between intensity of rainfall intraseasonal oscillation and summer-mean rainfall over Yangtze River Basin in eastern China. Climate Dynamics, 53(5-6): 3089-3108. (59)Qi, YanJun; Zhang, RenHe; Rong, XinYao; Li, Jian; Li, Lun. (2019b). Boreal Summer Intraseasonal Oscillation in the Asian-Pacific Monsoon Region Simulated in CAMS-CSM. Journal of Meteorological Research, 33(1): 66-79. doi:10.1007/s13351-019-8080-7 (60)Qie, X. S.; Zhang, Y. J. (2019). A Review of Atmospheric Electricity Research in China from 2011 to 2018. Advances in Atmospheric Sciences, 36(9): 994-1014. (61)Ren, H. L.; Wu, Y. J.; Bao, Q.; Ma, J. H.; Liu, C. Z.; Wan, J. H.; Li, Q. P.; Wu, X. F.; Liu, Y.; Tian, B.; Fu, J. X.; Sun, J. Q. (2019). The China Multi-Model Ensemble Prediction System and Its Application to Flood-Season Prediction in 2018. Journal of Meteorological Research, 33(3): 540-552. (62)Song, Bo; Wang, HuiZan; Chen, ChangLin; Zhang, Ren; Bao, SenLiang. (2019a). Observed subsurface eddies near the Vietnam coast of the South China Sea. Acta Oceanologica Sinica, 38(4): 39-46. doi:10.1007/s13131-019-1412-8 (63)Song, X. M.; Zhang, R. H.; Rong, X. Y. (2019b). Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Nino and La Nina. Advances in Atmospheric Sciences, 36(8): 779-792. (64)Sun, C. H.; Zhang, R. N.; Li, W. J.; Zhu, J. S.; Yang, S. (2019a). Possible impact of North Atlantic warming on the decadal change in the dominant modes of winter Eurasian snow water equivalent during 1979-2015. Climate Dynamics, 53(9-10): 5203-5213. (65)Sun, Wenwen; Wang, Dongfang; Yao, Lan; Fu, Hongbo; Fu, Qingyan; Wang, Hongli; Li, Qing; Wang, Lin; Yang, Xin; Xian, Aiyong; Wang, Gehui; Xiao, Hang; Chen, Jianmin. (2019b). Chemistry-triggered events of PM2.5 explosive growth during late autumn and winter in Shanghai, China. Environmental Pollution, 254. doi:10.1016/j.envpol.2019.07.032 (66)Sun, Z. B.; Wang, H.; Guo, C. W.; Wu, J.; Cheng, T. T.; Li, Z. M. (2019c). Barrier effect of terrain on cold air and return flow of dust air masses. Atmospheric Research, 220: 81-91. (67)Ullah, S.; You, Q. L.; Ali, A.; Ullan, W.; Jan, M. A.; Zhang, Y. Q.; Xie, W. X.; Xie, X. R. (2019a). Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980-2016. Atmospheric Research, 216: 37-51. (68)Ullah, S.; You, Q. L.; Ullah, W.; Ali, A.; Xie, W. X.; Xie, X. R. (2019b). Observed changes in temperature extremes over China-Pakistan Economic Corridor during 1980-2016. International Journal of Climatology, 39(3): 1457-1475. (69)Ullah, S.; You, Q. L.; Ullah, W.; Hagan, D. F. T.; Ali, A.; Ali, G.; Zhang, Y. Q.; Jan, M. A.; Bhatti, A. S.; Xie, W. X. (2019c). Daytime and nighttime heat wave characteristics based on multiple indices over the China-Pakistan economic corridor. Climate Dynamics, 53(9-10): 6329-6349. (70)Wang, Fei; Deng, Xiaohua; Zhang, Yijun; Li, Yajun; Zhang, Guangshu; Xu, Liangtao; Zheng, Dong. (2019a). Numerical Simulation of the Formation of a Large Lower Positive Charge Center in a Tibetan Plateau Thunderstorm. Journal of Geophysical Research: Atmospheres, 124(124): 9561-9563. doi:10.1029/2018jd029676 (71)Wang, Jian; Mao, JianBo; Zhang, Yan; Cheng, TinaTao; Yu, Qi; Tan, JiaNi; Ma, WeiChun. (2019b). Simulating the Effects of Urban Parameterizations on the Passage of a Cold Front During a Pollution Episode in Megacity Shanghai. Atmosphere, 10(2): 21. doi:10.3390/atmos10020079 (72)Wang, L.; Robertson, A. W. (2019). Week 3-4 predictability over the United States assessed from two operational ensemble prediction systems. Climate Dynamics, 52(9-10): 5861-5875. (73)Wang, L.; Yuan, X. J.; Li, C. H. (2019c). Subseasonal forecast of Arctic sea ice concentration via statistical approaches. Climate Dynamics, 52(7-8): 4953-4971. (74)Wang, R. F.; Wu, Liguang. (2019). Influence of Track Changes on the Poleward Shift of LMI Location of Western North Pacific Tropical Cyclones. Journal of Climate, 32(23): 8437-8445. (75)Wang, Tijian; Gao, Taichang; Zhang, Hongsheng; Ge, Maofa; Lei, Hengchi; Zhang, Peichang; Zhang, Peng; Lu, Chunsong; Liu, Chao; Zhang, Hua; Zhang, Qiang; Liao, Hong; Kan, Haidong; Feng, Zhaozhong; Zhang, Yijun; Qie, Xiushu; Cai, Xuhui; Li, Mengmeng; Liu, Lei; Tong, Shengrui. (2019d). Review of Chinese atmospheric science research over the past 70 years: Atmospheric physics and atmospheric environment. Science China Earth Sciences, 62(12): 1903-1945. doi:10.1007/s11430-019-9536-1 (76)Wang, XiaoYan; Zhang, RenHe; Yu, Wei. (2019e). The Effects of PM2.5 Concentrations and Relative Humidity on Atmospheric Visibility in Beijing. Journal of Geophysical Research-Atmospheres, 124(4): 2235-2259. doi:10.1029/2018jd029269 (77)Wang, YanYu; Duan, JunYan; Xie, Xin; He, QianShan; Cheng, TianTao; Mu, HaiZhen; Gao, Wei; Li, Xiang. (2019f). Climatic Factors and Their Availability in Estimating Long-Term Variations of Fine Particle Distributions Over East China. Journal of Geophysical Research-Atmospheres, 124(6): 3319-3334. doi:10.1029/2018jd029622 (78)Wang, Yuqi; Wu, Renguang; Wen, Zhiping. (2019g). Seasonal variations in size and intensity of the Indo-western Pacific warm pool in different sectors. Journal of Oceanography, 75(5): 423-439. doi:10.1007/s10872-019-00511-y (79)Wang, Zhenzhen; Wang, Tao; Fu, Hongbo; Zhang, Liwu; Tang, Mingjin; George, Christian; Grassian, Vicki H.; Chen, Jianmin. (2019h). Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing. Atmospheric Chemistry and Physics, 19(19): 12569-12585. doi:10.5194/acp-19-12569-2019 (80)Wei, W.; Zhang, R. H.; Wen, M.; Yang, S.; Li, W. H. (2019a). Dynamic effect of the South Asian high on the interannual zonal extension of the western North Pacific subtropical high. International Journal of Climatology, 39(14): 5367-5379. (81)Wei, Y. T.; Ren, H. L.; Mu, M.; Fu, J. X. (2019b). Nonlinear optimal moisture perturbations as excitation of primary MJO events in a hybrid coupled climate model. Climate Dynamics. (82)Wei, YunTao; Mu, Mu; Ren, HongLi; Fu, Joshua XiouHua. (2019c). Conditional Nonlinear Optimal Perturbations of Moisture Triggering Primary MJO Initiation. Geophysical Research Letters, 46(6): 3492-3501. doi:10.1029/2018gl081755 (83)Wu, BingYi; Francis, Jennifer A. (2019). Summer Arctic Cold Anomaly Dynamically Linked to East Asian Heat Waves. Journal of Climate, 32(4): 1137-1150. doi:10.1175/jcli-d-18-0370.1 (84)Wu, Di; Ding, Xiang; Li, Qing; Sun, Jianfeng; Huang, Cheng; Yao, Lan; Wang, Xinming; Ye, Xingnan; Chen, Yingjun; He, Hong; Chen, Jianmin. (2019a). Pollutants emitted from typical Chinese vessels: Potential contributions to ozone and secondary organic aerosols. Journal of Cleaner Production, 238. doi:10.1016/j.jclepro.2019.117862 (85)Wu, JunJie; Wu, ZhiWei. (2019). Inter-decadal change of the spring North Atlantic Oscillation impact on the summer Pamir-Tienshan snow cover. International Journal of Climatology, 39(2): 629-642. doi:10.1002/joc.5831 (86)Wu, LiGuang; Liu, QingYuan; Li, YunBin. (2019b). Tornado-scale vortices in the tropical cyclone boundary layer: numerical simulation with the WRF-LES framework. Atmospheric Chemistry and Physics, 19(4): 2477-2487. doi:10.5194/acp-19-2477-2019 (87)Xie, X.; Zhang, X. M.; Wang, Y. Y.; Lyu, R.; Zhou, G. Q.; Cheng, T. T.; Liu, Y. H.; Peng, Y. R.; He, Q. S.; Gao, W.; Li, X.; Zhang, Q. (2019). Effects of Shipping-originated Aerosols on Physical Cloud Properties over Marine Areas near East China. Aerosol and Air Quality Research, 19(7): 1471-1482. (88)Xu, C. H.; Wei, M.; Chen, J. M.; Zhu, C.; Li, J. R.; Xu, X. M.; Wang, W. X.; Zhang, Q. Z.; Ding, A. J.; Kan, H. D.; Zhao, Z. H.; Mellouki, A. (2019). Profile of inhalable bacteria in PM2.5 at Mt. Tai, China: Abundance, community, and influence of air mass trajectories. Ecotoxicology and Environmental Safety, 168: 110-119. (89)Yan, Y. W.; Wang, G. H.; Xue, H. J.; Chai, F. (2019). Buoyancy Effect on the Winter South China Sea Western Boundary Current. Journal of Geophysical Research-Oceans. (90)Yang, M. H.; Tan, Y. K.; Li, X.; Chen, X.; Zhang, C.; Yu, P. L. (2019a). Influence of cumulus convection schemes on winter North Pacific storm tracks in the regional climate model RegCM4.5. International Journal of Climatology. (91)Yang, Z. B.; Wang, G. H.; Chen, C. L. (2019b). Horizontal velocity structure of mesoscale eddies in the South China Sea. Deep-Sea Research Part I-Oceanographic Research Papers, 149. (92)Yao, Lan; Wang, Dongfang; Fu, Qingyan; Qiao, Liping; Wang, Hongli; Li, Li; Sun, Wenwen; Li, Qing; Wang, Lin; Yang, Xin; Zhao, Zhuohui; Kan, Haidong; Xian, Aiyong; Wang, Gehui; Xiao, Hang; Chen, Jianmin. (2019a). The effects of firework regulation on air quality and public health during the Chinese Spring Festival from 2013 to 2017 in a Chinese megacity. Environment International, 126: 96-106. doi:10.1016/j.envint.2019.01.037 (93)Yao, Lan; Zhan, Bixin; Xian, Aiyong; Sun, Wenwen; Li, Qing; Chen, Jianmin. (2019b). Contribution of transregional transport to particle pollution and health effects in Shanghai during 2013-2017. Science of the Total Environment, 677: 564-570. doi:10.1016/j.scitotenv.2019.03.488 (94)Yao, Tandong; Xue, Yongkang; Chen, Deliang; Chen, Fahu; Thompson, Lonnie; Cui, Peng; Koike, Toshio; Lau, William K.-M.; Lettenmaier, Dennis; Mosbrugger, Volker; Zhang, Renhe; Xu, Baiqing; Dozier, Jeff; Gillespie, Thomas; Gu, Yu; Kang, Shichang; Piao, Shilong; Sugimoto, Shiori; Ueno, Kenichi; Wang, Lei; Wang, Weicai; Zhang, Fan; Sheng, Yongwei; Guo, Weidong; Ailikun; Yang, Xiaoxin; Ma, Yaoming; Shen, Samuel S. P.; Su, Zhongbo; Chen, Fei; Liang, Shunlin; Liu, Yimin; Singh, Vijay P.; Yang, Kun; Yang, Daqing; Zhao, Xinquan; Qian, Yun; Zhang, Yu; Li, Qian. (2019c). Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 100(3): 423-444. doi:10.1175/bams-d-17-0057.1 (95)Yao, YongHong; Lin, Hai; Wu, QiGang. (2019d). Linkage between Interannual Variation of the East Asian Intraseasonal Oscillation and Mei-Yu Onset. Journal of Climate, 32(1): 145-160. doi:10.1175/jcli-d-17-0873.1 (96)You, Jin; Zheng, Dong; Zhang, YiJun; Yao, Wen; Meng, Qing. (2019a). Duration, spatial size and radiance of lightning flashes over the Asia-Pacific region based on TRMM/LIS observations. Atmospheric Research, 223: 98-113. doi:10.1016/j.atmosres.2019.03.013 (97)You, Q. L.; Bao, Y. T.; Jiang, Z. H.; Pepin, N.; Moore, G. W. K. (2019b). Surface pressure and elevation correction from observation and multiple reanalyses over the Tibetan Plateau. Climate Dynamics, 53(9-10): 5893-5908. (98)You, QingLong; Liu, JuJu; Pepin, Nick. (2019c). Changes of summer cloud water content in China from ERA-Interim reanalysis. Global and Planetary Change, 175: 201-210. doi:10.1016/j.gloplacha.2019.02.014 (99)You, Qinglong; Zhang, Yuqing; Xie, Xingyang; Wu, Fangying. (2019d). Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5 °C and 2 °C. Climate Dynamics, 53(3-4): 2047-2060. doi:10.1007/s00382-019-04775-4 (100)Yuan, S. J.; Luo, X. D.; Mu, B.; Li, J.; Dai, G. K. (2019). Prediction of North Atlantic Oscillation Index with Convolutional LSTM Based on Ensemble Empirical Mode Decomposition. Atmosphere, 10(5). (101) Zeng, W. X.; Chen, G. X.; Du, Y.; Wen, Z. P. (2019). Diurnal Variations of Low-Level Winds and Precipitation Response to Large-Scale Circulations during a Heavy Rainfall Event. Monthly Weather Review, 147(11): 3981-4004. (102) Zhang, F.; Yu, X. F.; Chen, J. M.; Zhu, Z. H.; Yu, X. Y. (2019a). Dark air-liquid interfacial chemistry of glyoxal and hydrogen peroxide. Npj Climate and Atmospheric Science, 2. doi:10.1038/s41612-019-0085-5 (103) Zhang, Fei; Yu, Xiaofei; Sui, Xiao; Chen, Jianmin; Zhu, Zihua; Yu, Xiao-Ying. (2019b). Evolution of aqSOA from the Air-Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals. Environmental science & technology, 53(17): 10236-10245. doi:10.1021/acs.est.9b03642 (104) Zhang, H. M.; Lu, W. T.; Zhang, Y.; Zhang, Y. J.; Fan, Y. F.; Qi, Q. (2019c). Analysis of radiation evolution characteristics of the artificial triggered lightning channel. Chinese Optics, 12(3): 670-677. doi:10.3788/co.20191203.0670 (105) Zhang, H. M.; Zhang, Y. J.; Lyu, W. T.; Zhang, Y.; Qi, Q.; Fan, Y. F. (2019d). Analysis of the Spectral Characteristics of Triggered Lightning. Advances in Atmospheric Sciences, 36(11): 1265-1272. doi:10.1007/s00376-019-9006-0 (106) Zhang, HaiYan; Wen, ZhiPing; Wu, RenGuang; Li, XiuZhen; Chen, RuiDan. (2019e). An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s. Climate Dynamics, 52(3-4): 1935-1948. doi:10.1007/s00382-018-4228-x (107) Zhang, Jingwei; Chen, Jianmin; Xue, Chaoyang; Chen, Hui; Zhang, Qiang; Liu, Xingang; Mu, Yujing; Guo, Yitian; Wang, Danyun; Chen, Yong; Li, Jialin; Qu, Yu; An, Junling. (2019f). Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Science of the Total Environment, 681: 110-123. doi:10.1016/j.scitotenv.2019.05.100 (108) Zhang, K.; Mu, Mu; Wang, Q.; Yin, B. S.; Liu, S. X. (2019g). CNOP-Based Adaptive Observation Network Designed for Improving Upstream Kuroshio Transport Prediction. Journal of Geophysical Research-Oceans, 124(6): 4350-4364. (109) Zhang, P.; Wu, Z. W.; Li, J. P. (2019h). Reexamining the relationship of La Nina and the East Asian Winter Monsoon. Climate Dynamics, 53(1-2): 779-791. (110) Zhang, Peng; Wang, Bin; Wu, ZhiWei. (2019i). Weak El Nino and Winter Climate in the Mid- to High Latitudes of Eurasia. Journal of Climate, 32(2): 405-421. doi:10.1175/jcli-d-17-0583.1 (111) Zhang, R. N.; Sun, C. H.; Zhang, R. H.; Li, W. J.; Zuo, J. Q. (2019j). Role of Eurasian Snow Cover in Linking Winter-Spring Eurasian Coldness to the Autumn Arctic Sea Ice Retreat. Journal of Geophysical Research-Atmospheres, 124(16): 9205-9221. (112) Zhang, WenJuan; Rutledge, Steven A; Xu, WeiXin; Zhang, YiJun. (2019k). Inner-core lightning outbreaks and convective evolution in Super Typhoon Haiyan (2013). Atmospheric Research, 219: 123-139. doi:10.1016/j.atmosres.2018.12.028 (113) Zhang, Yuqing; Liu, Chuanming; You, Qinglong; Chen, Changchun; Xie, Wenxin; Ye, Zhengwei; Li, Xinchuan; He, Qiaoning. (2019l). Decrease in light precipitation events in Huai River Eco-economic Corridor, a climate transitional zone in eastern China. Atmospheric Research, 226: 240-254. doi:https://doi.org/10.1016/j.atmosres.2019.04.027 (114) Zhang, Yuqing; You, Qinglong; Mao, Guangxiong; Chen, Changchun; Ye, Zhengwei. (2019m). Short-term concurrent drought and heatwave frequency with 1.5 and 2.0 °C global warming in humid subtropical basins: a case study in the Gan River Basin, China. Climate Dynamics, 52(7): 4621-4641. doi:10.1007/s00382-018-4398-6 (115) Zhao, Wanyu; Fu, Pingqing; Yue, Siyao; Li, Linjie; Xie, Qiaorong; Zhu, Chao; Wei, Lianfang; Ren, Hong; Li, Ping; Li, Weijun; Sun, Yele; Wang, Zifa; Kawamura, Kimitaka; Chen, Jianmin. (2019a). Excitation-emission matrix fluorescence, molecular characterization and compound-specific stable carbon isotopic composition of dissolved organic matter in cloud water over Mt. Tai. Atmospheric Environment, 213: 608-619. doi:10.1016/j.atmosenv.2019.06.034 (116) Zhao, Xia; Yuan, Dongliang; Yang, Guang; Wang, Jing; Liu, Hailong; Zhang, Renhe; Han, Weiqing. (2019b). Interannual variability and dynamics of intraseasonal wind rectification in the equatorial Pacific Ocean. Climate Dynamics, 52(7): 4351-4369. doi:10.1007/s00382-018-4383-0 (117) Zheng, Dong; Wang, Daohong; Zhang, Yijun; Wu, Ting; Takagi, Nobuyuki. (2019). Charge Regions Indicated by LMA Lightning Flashes in Hokuriku's Winter Thunderstorms. Journal of Geophysical Research-Atmospheres, 124(13): 7179-7206. doi:10.1029/2018jd030060 (118) Zhou, F. L.; Zhang, R. H.; Han, J. P. (2019a). Relationship between the Circumglobal Teleconnection and Silk Road Pattern over Eurasian continent. Science Bulletin, 64(6): 374-376. (119) Zhou, Q.; Mu, Mu; Duan, W. S. (2019b). The Initial Condition Errors Occurring in the Indian Ocean Temperature That Cause Spring Predictability Barrier for El Nino in the Pacific Ocean. Journal of Geophysical Research-Oceans, 124(2): 1244-1261. (120) Zhou, ZhenQiang; Zhang, RenHe; Xie, ShangPing. (2019c). Interannual Variability of Summer Surface Air Temperature over Central India: Implications for Monsoon Onset. Journal of Climate, 32(6): 1693-1706. doi:10.1175/jcli-d-18-0675.1 (121) 董晓晓; 武炳义. (2019). 江淮地区夏季高温事件与北极冷异常的动力联系. 应用气象学报, 30(4): 431-442. (122) 黄红兰; 钟沃谷; 衣德萍; 蔡军火; 张露. (2019). 未来气候变化对我国毛红椿适生区分布格局的影响预测. 南京林业大学学报(自然科学版). (123) 黄思洁; 李秀珍; 温之平. (2019). 中国东部夏季风北界年际变化的东西差异及其影响因子. 大气科学, 43(5): 1068-1080. (124) 李思; 武炳义. (2019). 冬季欧亚大陆盛行天气型与北极增暖异常的可能联系. 气象, 45(03): 345-361. (125) 刘菊菊; 游庆龙; 王楠. (2019). 青藏高原夏季云水含量及其水汽输送年际异常分析. 高原气象, 38: 449-459. doi:10.7522/j.issn.1000-0534.2018.00138 (126) 刘丽; 谭言科; 夏淋淋. (2019). 北太平洋冬季西部发展型天气尺度涡旋对平均流的影响. 大气科学, 42(2): 174-183. (127) 施广全; 张义军; 陈绍东; 张阳; 郑栋. (2019a). 风力发电机组防雷技术进展综述. 电网技术: 1-11. (128) 施广全; 张义军; 陈绍东; 张阳; 郑栋. (2019b). 基于人工触发闪电的风力发电机组雷电能量耦合试验研究.高电压技术1-8. (129) 王体健; 高太长; 张宏昇; 葛茂发; 雷恒池; 张培昌; 张鹏; 陆春松; 刘超; 张华; 张强; 廖宏; 阚海东; 冯兆忠; 张义军; 郄秀书; 蔡旭晖; 李蒙蒙; 刘磊; 佟胜睿. (2019). 新中国成立70年以来的中国大气科学研究: 大气物理与大气环境篇. 49(12): 1833-1874. (130) 吴芳营; 游庆龙; 谢文欣; 张玲. (2019). 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征. 气候变化研究进展, 15(02): 130-139. (131) 武炳义. (2019). 2012年1月、2016年1月东亚两次极端严寒事件及其与北极增暖的可能联系. 大气科学学报, 42(01): 14-27. (132) 向杰勋; 陈桂兴; 姜平; 吴乃庚; 温之平. (2019). 冷空气强风在大型城市中的精细结构和形成机制. 大气科学, 43(3): 577-597. (133) 荀爱萍; 吴其冈; 胡雅君; 姚永红. (2019). 观测分析非洲南部地区土壤湿度异常对南半球大气环流的显著影响. 大气科学, 43: 552-564. doi:10.3878/j.issn.1006-9895.1806.18116. (134) 殷启元; 范祥鹏; 张义军; 张阳; 郑栋; 陈绍东. (2019). 一次“晴天霹雳”致死事件分析. 气象学报, 77(02): 292-302. (135) 张潮; 谭言科; 李崇银; 平已川. (2019). 高低频系统相互作用对Rossby波破碎过程的影响. 大气科学, 43(02): 221-232. (136) 张华明; 吕伟涛; 张阳; 张义军; 樊艳峰; 齐奇. (2019). 人工触发闪电通道的辐射特性分析. 中国光学, 12: 670-677. (137) 张妤晴; 林爱兰; 温之平. (2019). 南海周边越赤道气流的多时间尺度变化特征及其与环流和降水的联系. 热带气象学报, 35(4): 504-516. (138) Wang, Yiyang; Liu, Risheng; Ma, Long; Song, Xiaoliang; Aaai. (2019). Task Embedded Coordinate Update: A Realizable Framework for Multivariate Non-Convex Optimization. 2018 (1) Cai, SiYi; Li, Qing; Wang, ShuXiao; Chen, JianMin; Ding, Dian; Zhao, Bin; Yang, DeShan; Hao, JiMing. (2018). Pollutant emissions from residential combustion and reduction strategies estimated via a village-based emission inventory in Beijing. Environmental Pollution, 238, 230-237. doi:10.1016/j.envpol.2018.03.036pdf (2) Cao, DanDan; Wu, QiGang*; Hu, AiXue; Yao, YongHong; Liu, ShiZuo; Schroeder, Steven R; Yang, FuCheng. (2018). Linear and nonlinear winter atmospheric responses to extreme phases of low frequency Pacific sea surface temperature variability. Climate Dynamics, 1-20pdf (3) Chen, JiePeng; Wang, Xin; Zhou, Wen; Wen, ZhiPing. (2018). Interdecadal change in the summer SST-precipitation relationship around the late 1990s over the South China Sea. Climate Dynamics, 51(5), 2229-2246. doi:10.1007/s00382-017-4009-ypdf (4) Chen, RuiDan; Wen, ZhiPing; Lu, RiYu. (2018a). Large-Scale Circulation Anomalies and Intraseasonal Oscillations Associated with Long-Lived Extreme Heat Events in South China. Journal of Climate, 31(1), 213-232. doi:10.1175/jcli-d-17-0232.1pdf (5) Chen, RuiDan; Wen, ZhiPing; Lu, RiYu. (2018b). Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Climate Dynamics, 51(5), 2113-2126. doi:10.1007/s00382-017-4002-5pdf (6) Chen, ZeSheng; Du, Yan; Wen, ZhiPing; Wu, RenGuang; Wang, ChunZai. (2018). Indo-Pacific climate during the decaying phase of the 2015/16 El Niño: role of southeast tropical Indian Ocean warming. Climate Dynamics, 50(11), 4707-4719. doi:10.1007/s00382-017-3899-zpdf (7) Cui, LuLu; Duo, Bu; Zhang, Fei; Li, ChunLin; Fu, HongBo; Chen, JianMin*. (2018). Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure. Environmental Pollution, 236, 992-1003. doi:10.1016/j.envpol.2017.10.107pdf (8) Cui, LuLu; Li, Rui; Zhang, YunChen; Meng, Ya; Fu, HongBo; Chen, JianMin*. (2018). An observational study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO formation during the haze episodes. Science of the Total Environment, 630, 1057-1070. doi:10.1016/j.scitotenv.2018.02.063pdf (9) Dou, Juan ; Wu, ZhiWei*. (2018). Southern Hemisphere Origins for Interannual Variations of Snow Cover over the Western Tibetan Plateau in Boreal Summer. Journal of Climate, 31(19), 7701-7718. doi:10.1175/jcli-d-17-0327.1pdf (10) Du, ChengTian; Kong, LingDong; Zhanzakova, Assiya; Tong, SongYing; Yang, Xin; Wang, Lin; Fu, HongBo; Cheng, TianTao; Chen, JianMin*; Zhang, ShiCheng. (2018). Impact of heterogeneous uptake of nitrogen dioxide on the conversion of acetaldehyde on gamma-alumina in the absence and presence of simulated solar irradiation. Atmospheric Environment, 187, 282-291. doi:https://doi.org/10.1016/j.atmosenv.2018.05.067pdf (11) Duan, JunYan; Wang, YanYu; Xie, Xin; Li, Mei; Tao, Jun; Wu, YunFei; Cheng, TianTao*; Zhang, RenJian; Liu, YueHui; Li, Xiang; He, QianShan; Gao, Wei; Wang, JianPeng. (2018). Influence of pollutants on activity of aerosol cloud condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China. Science of the Total Environment, 642, 1008-1019. doi:10.1016/j.scitotenv.2018.06.053pdf (12)Fan, PengLei; Zheng, Dong; Zhang, YiJun*; Gu, ShanQiang; Zhang, WenJuan; Yao, Wen; Yan, BiWu; Xu, YongBin. (2018). A Performance Evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. Journal of Atmospheric Oceanic Technology , 35(4), 927-939. doi:10.1175/Jtech-D-17-0144.1pdf (13) Fan, XiangPeng; Zhang, YiJun*; Zhang, GuangShu; Zheng, Dong. (2018). Lightning Characteristics and Electric Charge Structure of a Hail-Producing Thunderstorm on the Eastern Qinghai–Tibetan Plateau. Atmosphere, 9(8), 295pdf (14) Fang, XiangHui; Mu, Mu. (2018a). Both air-sea components are crucial for El Nino forecast from boreal spring. Scientific Reports, 8(1), 10501. doi:10.1038/s41598-018-28964-zpdf (15) Fang, XiangHui; Mu, Mu. (2018b). A Three-Region Conceptual Model for Central Pacific El Niño Including Zonal Advective Feedback. Journal of Climate, 31(13), 4965-4979. doi:10.1175/jcli-d-17-0633.1pdf (16) Fu, Joshua-Xiouhua*; Wang, WanQiu; Ren, HongLi; Jia, XiaoLong; Shinoda, Toshiaki. (2018). Three different downstream fates of the boreal-summer MJOs on their passages over the Maritime Continent. Climate Dynamics, 51(5), 1841-1862. doi:10.1007/s00382-017-3985-2pdf (17) Fu, Joshua-Xiouhua*; Wang, WanQiu; Zhu, YueJian; Ren, HongLi; Jia, XiaoLong; Shinoda, Toshiaki. (2018). Impacts of Different Cumulus Schemes on the Pathways through which SST Provides Feedback to the Madden–Julian Oscillation. Journal of Climate, 31(14), 5559-5579. doi:10.1175/jcli-d-17-0432.1pdf (18) Gao, JiaYi; Huang, ZhiWei; Chen, YaXin; Wan, Jing; Gu, Xiao; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2018). Activating Inert Alkali-Metal Ions by Electron Transfer from Manganese Oxide for Formaldehyde Abatement. Chemistry-a European Journal, 24(3), 681-689. doi:10.1002/chem.201704398pdf (19) Guo, YuanYuan; Wen, ZhiPing*; Chen, RuiDan; Li, XiuZhen; Yang, Xiu–Qun. (2018). Effect of boreal spring precipitation anomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection. Climate Dynamics, 52(1-2), 401-416. doi:10.1007/s00382-018-4149-8pdf (20) He, Qiong; Zuo, ZhiYan; Zhang, RenHe; Zhang, RuoNan. (2018). Seasonal prediction and predictability of Eurasian spring snow water equivalent in NCEP Climate Forecast System version 2 reforecasts. Climate Dynamics, 50(1-2), 339-348. doi:10.1007/s00382-017-3611-3pdf (21) Jiang, ShuQin; Ye, XingNan; Wang, RuYu; Tao, Ye; Ma, Zhen; Yang, Xin; Chen, JianMin*. (2018). Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai. Science of the Total Environment, 615, 452-461. doi:10.1016/j.scitotenv.2017.09.176pdf (22) Jin, Rui; Wu, ZhiWei*; Zhang, Peng. (2018). Tibetan Plateau capacitor effect during the summer preceding ENSO: from the Yellow River climate perspective. Climate Dynamics, 51(1), 57-71. doi:10.1007/s00382-017-3906-4pdf (23) Kong, LingDong; Du, ChengTian; Zhanzakova, Assiya; Cheng, TianTao; Yang, Xin; Wang, Lin; Fu, HongBo; Chen, JianMin*; Zhang, ShiCheng. (2018). Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study. Science of the Total Environment, 634, 1192-1204. doi:10.1016/j.scitotenv.2018.04.086pdf (24) Li, ChengCheng; Ren, HongLi; Zhou, Fang; Li, ShuangLin; Fu, Joshua-Xiouhua; Li, GuoPing. (2018). Multi-pentad prediction of precipitation variability over Southeast Asia during boreal summer using BCC_CSM1.2. Dynamics of Atmospheres and Oceans, 82, 20-36. doi:https://doi.org/10.1016/j.dynatmoce.2018.02.002pdf (25) Li, Jiao; Ding, RuiQiang; Wu, ZhiWei*; Zhong, QuanJia; Li, BaoSheng; Li, JianPing. (2018). Inter-decadal change in potential predictability of the East Asian summer monsoon. Theoretical and Applied Climatology, 136(1-2), 403-415. doi:10.1007/s00704-018-2482-9pdf (26) Li, Lun; Zhang, RenHe; Wen, Min; Duan, JianPing. (2018a). Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices. Climate Dynamics, 50(11-12), 4507-4518. doi:10.1007/s00382-017-3887-3pdf (27) Li, Lun; Zhang, RenHe; Wen, Min; Duan, JianPing. (2018b). Modulation of the Intensity of Nascent Tibetan Plateau Vortices by Atmospheric Quasi-Biweekly Oscillation. Advances in Atmospheric Sciences, 35(11), 1347-1361. doi:10.1007/s00376-018-8057-ypdf (28) Li, Lun; Zhang, RenHe*; Wen, Min; Lu, JunMei. (2018). Effect of the atmospheric quasi-biweekly oscillation on the vortices moving off the Tibetan Plateau. Climate Dynamics, 50(3-4), 1193-1207. doi:10.1007/s00382-017-3672-3pdf (29) Li, Rui; Meng, Ya; Fu, HongBo; Zhang, LiWu; Ye, XingNan; Chen, JianMin*. (2018). Characteristics of the pollutant emissions in a tunnel of Shanghai on a weekday. Journal of Environmental Sciences, 71, 136-149. doi:10.1016/j.jes.2017.11.015pdf (30) Li, YuanPu; Tian, WenShou; Xie, Fei; Wen, ZhiPing*; Zhang, JianKai; Hu, DingZhu; Han, YuanYuan. (2018). The connection between the second leading mode of the winter North Pacific sea surface temperature anomalies and stratospheric sudden warming events. Climate Dynamics, 51(1), 581-595. doi:10.1007/s00382-017-3942-0pdf (31) Liu, Lu; Wang, XinFeng; Chen, JianMin*; Xue, LiKun; Wang, WenXing; Wen, Liang; Li, DanDan; Chen, TianShu. (2018). Understanding unusually high levels of peroxyacetyl nitrate (PAN) in winter in Urban Jinan, China. Journal of Environmental Sciences, 71, 249-260. doi:10.1016/j.jes.2018.05.015pdf (32) Liu, Xia; Mu, Mu; Wang, Qiang. (2018). The Nonlinear Optimal Triggering Perturbation of the Kuroshio Large Meander and Its Evolution in a Regional Ocean Model. Journal of Physical Oceanography, 48(8), 1771-1786. doi:10.1175/Jpo-D-17-0246.1pdf (33) Lyu, MengXia; Wen, Min; Wu, ZhiWei*. (2018). Possible contribution of the inter-annual Tibetan Plateau snow cover variation to the Madden–Julian oscillation convection variability. International Journal of Climatology, 38(10), 3787-3800. doi:doi:10.1002/joc.5533pdf (34) Ren, PengFei; Ren, HongLi; Fu, Joshua-Xiouhua; Wu, Jie; Du, LiangMin. (2018). Impact of Boreal Summer Intraseasonal Oscillation on Rainfall Extremes in Southeastern China and its Predictability in CFSv2. Journal of Geophysical Research: Atmospheres, 123(9), 4423-4442. doi:doi:10.1029/2017JD028043pdf (35) Shi, PeiJun; Shaw, Rajib; Ardalan, Ali; Chan, EmilyYingYang; Choudhury, JamilurReza; Cui, Peng; Fu, BoJie; Han, GuoYi; Han, QunLi; Izumi, Takako; Kasuga, Fumiko; Loyzaga, AntoniaYulo; Pereira, JoyJacqueline; Ravan, ShirishKumar; Sanderson, David; Sharma, VinodKumar; Thomalla, Frank; Triutomo, Sugeng; Yang, SiQuan; Ye, Qian; Wang, Ming; Wu, YaQiao; Zhang, RenHe; Zhang, WenJian; Li, Ying; Yang, SaiNi. (2018). Fourteen Actions and Six Proposals for Science and Technology-Based Disaster Risk Reduction in Asia. International Journal of Disaster Risk Science, 9(2), 275-279. doi:10.1007/s13753-018-0174-9pdf (36)Su, JingZhi; Lian, Tao; Zhang, RenHe; Chen, DaKe. (2018). Monitoring the pendulum between El Nino and La Nina events. Environmental Research Letters, 13(7). doi:ARTN 074001 10.1088/1748-9326/aac53fpdf (37) Su, JingZhi; Zhang, RenHe; Rong, XinYao; Min, QingYe; Zhu, CongWen. (2018). Sea Surface Temperature in the Subtropical Pacific Boosted the 2015 El Nino and Hindered the 2016 La Nina. Journal of Climate, 31(2), 877-893. doi:10.1175/Jcli-D-17-0379.1pdf (38) Sun, GuoDong; Mu, Mu. (2018). Assessing the characteristics of net primary production due to future climate change and CO2 under RCP4.5 in China. Ecological Complexity, 34, 58-68. doi:https://doi.org/10.1016/j.ecocom.2018.04.001pdf (39) Wang, Lei*; Robertson, Andrew W. (2018). Week 3–4 predictability over the United States assessed from two operational ensemble prediction systems. Climate Dynamics, 1-15pdf (40) Wang, Lei*; Yuan, XiaoJun; Li, CuiHua. (2018). Subseasonal forecast of Arctic sea ice concentration via statistical approaches. Climate Dynamics, 1-19pdf (41) Wang, XiaoYan*; Dickinson, Robert E; Su, LiangYuan; Zhou, ChuLüe; Wang, KaiCun. (2018). PM2.5 Pollution in China and How It Has Been Exacerbated by Terrain and Meteorological Conditions. American Meteorological Society, 99(1), 105-119. doi:10.1175/bams-d-16-0301.1pdf (42) Wang, YiFan; Wang, YanYu; Duan, JunYan; Cheng, TianTao*; Zhu, HaiLin; Xie, Xin; Liu, YueHui; Ling, Yan; Li, Xiang; Wang, HongLi. (2018). Temporal variation of atmospheric static electric field and air ions and their relationships to pollution in Shanghai. Aerosol and Air Quality Research, 18(7), 1631-1641. doi:10.4209/aaqr.2017.07.0248pdf (43) Wei, Ting; LI, jian; Rong, XinYao; Dong, WenJie; Wu, BingYi; Ding, MingHu. (2018). Arctic Climate Changes Based on Historical Simulations (1900-2013) with the CAMS-CSM. Journal of Meteorological Research, 0pdf (44) Wu, Di; Li, Qing; Ding, Xiang; Sun, JianFeng; Li, Dan; Fu, HongBo; Teich, Monique; Ye, XingNan; Chen, JianMin*. (2018). Primary Particulate Matter Emitted from Heavy Fuel and Diesel Oil Combustion in a Typical Container Ship: Characteristics and Toxicity. Environmental science & technology, 52(21), 12943-12951. doi:10.1021/acs.est.8b04471pdf (45) Wu, JunJie; Wu, ZhiWei*. (2018). Inter-decadal change of the spring North Atlantic Oscillation impact on the summer Pamir–Tienshan snow cover. International Journal of Climatology, 0(0), 629-642. doi:doi:10.1002/joc.5831pdf (46) Xiao, Dong; Zuo, ZhiYan; Zhang, RenHe; Zhang, XingYu; He, Qiong. (2018). Year-to-year variability of surface air temperature over China in winter. International Journal of Climatology, 38(4), 1692-1705. doi:10.1002/joc.5289pdf (47) Xu, Chen; Duan, JunYan; Wang, YanYu; Li, Mei; Cheng, TianTao*; Wang, Hua; Zhu, HaiLin; Xie, Xin; Liu, YueHui; Ling, Yan; Li, Xiang; Kong, LingDong; He, QianShan; Wang, HongLi; Zhang, RenJian. (2018). Effects of Wintertime Polluted Aerosol on Clouds over the Yangtze River Delta: Case Study. Aerosol and Air Quality Research, 18(7), 1799-1816. doi:10.4209/aaqr.2017.09.0322pdf (48) Xu, XianMang; Chen, JianMin*; Zhu, Chao; Li, JiaRong; Sui, Xiao; Liu, Lu; Sun, JianFeng. (2018). Fog composition along the Yangtze River basin: Detecting emission sources of pollutants in fog water. Journal of Environmental Sciences, 71, 2-12. doi:10.1016/j.jes.2017.09.018pdf (49) Yan, YunWei; Wang, GuiHua*; Chen, ChangLin*; Ling, Zheng. (2018). Annual and semiannual cycles of diurnal warming of sea surface temperature in the South China Sea. Journal of Geophysical Research: Oceans, 123(8), 5797-5807. doi:10.1029/2017jc013657 (50) Yang, Jun; Lyu, WeiTao; Ma, Ying; Zhang, YiJun; Li, QingYong; Yao, Wen; Lu, TianShu. (2018). Analyzing of Cloud Macroscopic Characteristics in the Shigatse Area of the Tibetan Plateau Using the Total-Sky Images. Journal of Applied Meteorology Climatology, 57(9), 1977-1987. doi:10.1175/Jamc-D-18-0095.1pdf (51) Yang, MingHao; Zuo, RuiTing; Wang, LiQiong; Chen, Xiong; Tan, YanKe; Li, Xin. (2018). Interannual Variability of the Winter North Atlantic Storm Track in CMIP5 Models. SOLA, 14, 74-78. doi:10.2151/sola.2018-013pdf (52) Yao, Lei; Garmash, Olga; Bianchi, Federico; Zheng, Jun; Yan, Chao; Kontkanen, Jenni; Junninen, Heikki; Mazon, Stephany Buenrostro; Ehn, Mikael; Paasonen, Pauli; Sipila, Mikko; Wang, Mingyi; Wang, Xinke; Xiao, Shan; Chen, Hangfei; Lu, Yiqun; Zhang, Bowen; Wang, Dongfang; Fu, Qingyan; Geng, Fuhai; Li, Li; Wang, Hongli; Qiao, Liping; Yang, Xin; Chen, Jianmin; Kerminen, Veli-Matti; Petaja, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Wang, Lin. (2018). Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361(6399), 278-+. doi:10.1126/science.aao4839pdf (53) Ye, Xiaochen; Wu, Zhiwei*; Wang, Zhaomin; Shen, Huying; Xu, Jianming. (2018). Seasonal Prediction of the Yangtze River Runoff Using a Partial Least Squares Regression Model. Atmosphere-Ocean, 56(2), 117-128. doi:10.1080/07055900.2018.1448751pdf (54) Yu, Bin; Lin, H.; Wu, ZhiWei; Merryfield, W. J. . (2018). The Asian–Bering–North American teleconnection: seasonality, maintenance, and climate impact on North America. Climate Dynamics, 50(5), 2023-2038. doi:10.1007/s00382-017-3734-6pdf (55) Zheng, Dong; Zhang, Yijun; Meng, Qing. (2018). Properties of Negative Initial Leaders and Lightning Flash Size in a Cluster of Supercells. Journal of Geophysical Research-Atmospheres, 123(22), 12,857-812,876. doi:doi:10.1029/2018JD028824pdf (56) Zhang, GuoQiang; Fu, HongBo; Chen, JianMin*. (2018). Effect of relative humidity and the presence of aerosol particles on the alpha-pinene ozonolysis. Journal of Environmental Sciences, 71, 99-107. doi:10.1016/j.jes.2017.10.011pdf (57) Zhang, HaiYan; Wen, ZhiPing*; Wu, RenGuang; Li, XiuZhen; Chen, RuiDan. (2018). An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s. Climate Dynamics, 52(3-4), 1935-1948. doi:10.1007/s00382-018-4228-xpdf (58) Zhang, RuoNan; Sun, ChengHu; Li, WeiJing. (2018). Relationship between the interannual variations of Arctic sea ice and summer Eurasian teleconnection and associated influence on summer precipitation over China. Chinese Journal of Geophysis-Chinese Edition, 61(1), 91-105. doi:10.6038/cjg2018K0755pdf (59) Zhang, RuoNan*; Sun, ChengHu; Zhang, RenHe; Jia, LiWei; Li, WeiJing. (2018). The impact of Arctic sea ice on the inter-annual variations of summer Ural blocking. International Journal of Climatology, 38(12), 4632-4650. doi:10.1002/joc.5731pdf (60) Zhang, WenJuan; Zhang, YiJun; Zheng, Dong; Xu, LiangTao; Lyu, WeiTao. (2018). Lightning climatology over the northwest Pacific region: An 11-year study using data from the World Wide Lightning Location Network. Atmospheric Research, 210, 41-57. doi:10.1016/j.atmosres.2018.04.013pdf (61) Zhang, Yang; Zhang, YiJun; Zheng, Dong; Lu, WeiTao. (2018). Characteristics and discharge processes of M events with large current in triggered lightning. Radio Science, 53(8), 974-985. doi:10.1029/2018rs006552pdf (62) Zhang, Yuqing; You, QingLong*; Mao, GuangXiong; Chen, ChangChun; Ye, ZhengWei. (2018). Short-term concurrent drought and heatwave frequency with 1.5 and 2.0° C global warming in humid subtropical basins: a case study in the Gan River Basin, China. Climate Dynamics, 1-21pdf (63) Zhou, Lei; Chen, DaKe; Karnauskas, Kristopher B; Wang, ChunZai; Lei, XiaoTu; Wang, Wei; Wang, GuiHua*; Han, GuiJun. (2018). Introduction to Special Section on Oceanic Responses and Feedbacks to Tropical Cyclones. Journal of Geophysical Research-Oceans, 123(2), 742-745. doi:10.1002/2018jc013809pdf (64) Zhu, HaiLin; Wang, HongLi; Jing, ShengAo; Wang, YiFan; Cheng, TianTao*; Tao, ShiKang; Lou, ShengRong; Qiao, LiPing; Li, Li; Chen, JianMin. (2018). Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China. Atmospheric Environment, 190, 232-240. doi:https://doi.org/10.1016/j.atmosenv.2018.07.026pdf (65) Zhu, XiaoCui; Guo, YuanYuan; Zhang, HaiYan; Li, XiuZhen; Chen, RuiDan; Wen, ZhiPing*.(2018) A Southward Withdrawal of the Northern Edge of the East Asian Summer Monsoon around the Early 1990s. Atmospheric and Oceanic Science Letters.11(2):136-142.doi:10.1080/16742834.2018.1410058pdf (66) Zuo, ZhiYan; Yang, Song; Xu, Kang; Zhang, RenHe; He, Qiong; Zhao, TianBao; Cong, Jing. (2018). Land surface air temperature variations over Eurasia and possible causes in the past century. International Journal of Climatology, 38(4), 1925-1937. doi:10.1002/joc.5306pdf (67)Fang, Xianghui*; Zheng, Fei. (2018). Simulating Eastern- and Central-Pacific Type ENSO Using a Simple Coupled Model. Advances in Atmospheric Sciences, 35(6), 671-681. doi:10.1007/s00376-017-7209-9pdf (68) 刘丽; 谭言科*; 夏淋淋. (2018). 北太平洋冬季天气尺度涡旋的机理分析. 大气科学, 42(5), 977-986pdf (69) 宋伟; 吴志伟; 李跃凤; 刘春. (2018). 冬季中国东部与北极之间近地面温度变化的年际联系.气候与环境研究(4)pdf (70) 武炳义*. (2018). 北极海冰融化影响东亚冬季天气和气候的研究进展以及学术争论焦点问题. 大气科学, 42(4), 786-805pdf (71) 向杰勋; 陈桂兴; 姜平; 吴乃庚; 温之平. (2018). 冷空气强风在大型城市的精细结构和形成机制. 大气科学(6)pdf (72) 张华明; 张义军; 吕伟涛; 张阳; 齐奇; 钱勇; 樊艳峰. (2018). 一次空中触发闪电通道光谱分析. 光谱学与光谱分析, 38, 3673-3677pdf 2017 (1) Chang, Zheng; Wu, HongXiang; Pan, Kexi; Zhu, HanXiong; Chen, JianMin*. (2017). Clean production pathways for regional power-generation system under emission constraints: A case study of Shanghai, China. Journal of Cleaner Production, 143, 989-1000. doi:https://doi.org/10.1016/j.jclepro.2016.12.021pdf (2) Chen, HangFei; Wang, MingYi; Yao, Lei; Chen, JianMin; Wang, Lin. (2017). Uptake of Gaseous Alkylamides by Suspended Sulfuric Acid Particles: Formation of Ammonium/Aminium Salts. Environmental science & technology, 51(20), 11710-11717. doi:10.1021/acs.est.7b03175pdf (3) Chen, JianMin*; Li, ChunLin; Ristovski, Zoran; Milic, Andelija; Gu, YuanTong; Islam, Mohammad S.; Wang, ShuXiao; Hao, JiMing; Zhang, HeFeng; He, Congrong; Guo, Hai; Fu, HongBo; Miljevic, Branka; Morawska, Lidia; Phong, Thai; Fat, Yun L. A. M.; Pereira, Gavin; Ding, AiJun; Huang, Xin; Dumka, Umesh C. (2017). A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment, 579, 1000-1034. doi:10.1016/j.scitotenv.2016.11.025pdf (4)Chen, JunXiao; Chen, YaXin; Zhou, MeiJuan; Huang, ZhiWei; Gao, JiaYi; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Enhanced Performance of Ceria-Based NOx Reduction Catalysts by Optimal Support Effect. Environmental science & technology, 51(1), 473-478. doi:10.1021/acs.est.6b04050pdf (5) Chen, YaXin; Dong, ZiChenXi; Huang, ZhiWei; Zhou, MeiJuan; Gao, JiaYi; Chen, JunXiao; Li, Chao; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Tuning electronic states of catalytic sites enhances SCR activity of hexagonal WO3 by Mo framework substitution. Catalysis Science & Technology, 7(12), 2467-2473. doi:10.1039/c7cy00416hpdf (6) Chen, YaXin; Gao, JiaYi; Huang, ZhiWei; Zhou, MeiJuan; Chen, JunXiao; Li, Chao; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Sodium Rivals Silver as Single-Atom Active Centers for Catalyzing Abatement of Formaldehyde. Environmental science & technology, 51(12), 7084-7090. doi:10.1021/acs.est.7b00499pdf (7) Chen, YaXin; Huang, ZhiWei ; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Fabrication, characterization, and stability of supported single-atom catalysts. Catalysis Science & Technology, 7(19), 4250-4258. doi:10.1039/c7cy00723jpdf (8) Chen, YaXin; Huang, ZhiWei; Gu, Xiao; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic materials. Chinese Journal of Catalysis, 38(9), 1588-1596. doi:10.1016/s1872-2067(17)62778-5pdf (9) Chen, YaXin; Huang, ZhiWei; Zhou, MeiJuan; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Single Silver Adatoms on Nanostructured Manganese Oxide Surfaces: Boosting Oxygen Activation for Benzene Abatement. Environmental science & technology, 51(4), 2304-2311. doi:10.1021/acs.est.6b04340pdf (10) Ding, XiaoXiao; Kong, LingDong; Du, ChengTian; Zhanzakova, Assiya; Fu, HongBo; Tang, Xingfu; Wang, Lin; Yang, Xin; Chen, JianMin*; Cheng, TianTao. (2017). Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. Atmospheric Environment, 167, 625-641. doi:https://doi.org/10.1016/j.atmosenv.2017.08.043pdf (11) Ding, XiaoXiao; Kong, LingDong; Du, ChengTian; Zhanzakova, Assiya; Wang, Lin; Fu, HongBo; Chen, JianMin*; Yang, Xin; Cheng, TianTao. (2017). Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. Science of the Total Environment, 583, 334-343. doi:10.1016/j.scitotenv.2017.01.073pdf (12) Duan, JunYan; Tao, Jun; Wu, YunFei; Cheng, TianTao*; Zhang, RenJian; Wang, YanYu; Zhu, HaiLin; Xie, Xin; Liu, YueHui; Li, Xiang; Kong, LingDong; Li, Mei; He, QianShan. (2017). Comparison of aerosol and cloud condensation nuclei between wet and dry seasons in Guangzhou, southern China. Science of the Total Environment, 607, 11-22. doi:10.1016/j.scitotenv.2017.06.246pdf (13) Dumka, U. C.; Kaskaoutis, D. G.; Sagar, Ram; Chen, JianMin; Singh, Narendra; Tiwari, Suresh. (2017). First results from light scattering enhancement factor over central Indian Himalayas during GVAX campaign. Science of the Total Environment, 605, 124-138. doi:10.1016/j.scitotenv.2017.06.138pdf (14) Fu, Joshua-Xiouhua*; Wang, WanQiu; Shinoda, Toshiaki; Ren, HongLi; Jia, XiaoLong. (2017). Toward Understanding the Diverse Impacts of Air-Sea Interactions on MJO Simulations. Journal of Geophysical Research: Oceans, 122(11), 8855-8875. doi:doi:10.1002/2017JC013187pdf (15) Li, ChunLin; Hu, YunJie; Zhang, Fei; Chen, JianMin*; Ma, Zhen; Ye, XingNan; Yang, Xin; Wang, Lin; Tang, XingFu; Zhang, RenHe; Mu, Mu; Wang, Guihua; Kan, Haidong; Wang, Xinming; Mellouki, Abdelwahid. (2017). Multi-pollutant emissions from the burning of major agricultural residues in China and the related health-economic effects. Atmospheric Chemistry and Physics, 17(8), 4957-4988. doi:10.5194/acp-17-4957-2017pdf (16) Li, JiaXun; Wang, GuiHua*; Zhai, XiaoMing. (2017). Observed cold filaments associated with mesoscale eddies in the South China Sea. Journal of Geophysical Research-Oceans, 122(1), 762-770pdf (17) Li, Lun; Zhang, RenHe; Wen, Min. (2017). Genesis of southwest vortices and its relation to Tibetan Plateau vortices. Quarterly Journal of the Royal Meteorological Society, 143(707), 2556-2566. doi:10.1002/qj.3106pdf (18) Li, Tim; Wang, Bin; Wu, Bo; Zhou, TianJun; Chang, Chih-Pei; Zhang, RenHe. (2017). Theories on Formation of an Anomalous Anticyclone in Western North Pacific during El Nino: A Review. Journal of Meteorological Research, 31(6), 987-1006. doi:10.1007/s13351-017-7147-6pdf (19)Lin, AiLan; Zhang, RenHe; He, Chao. (2017). The relation of cross-equatorial flow during winter and spring with South China Sea summer monsoon onset. International Journal of Climatology, 37(13), 4576-4585. doi:10.1002/joc.5106pdf (20) Liu, Li; Zhang, RenHe*; Zuo, ZhiYan. (2017). Effect of Spring Precipitation on Summer Precipitation in Eastern China: Role of Soil Moisture. Journal of Climate, 30(22), 9183-9194. doi:10.1175/Jcli-D-17-0028.1pdf (21)Luo, DeHai; Chen, YanNan; Dai, AiGuo; Mu, Mu; Zhang, RenHe; Simmonds, Ian. (2017). Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation. Environmental Research Letters, 12(12). doi:ARTN 12500210.1088/1748-9326/aa8de8pdf (22) Min, QingYe; Su, JingZhi; Zhang, RenHe. (2017). Impact of the South and North Pacific Meridional Modes on the El Nino-Southern Oscillation: Observational Analysis and Comparison. Journal of Climate, 30(5), 1705-1720. doi:10.1175/jcli-d-16-0063.1pdf (23) Mu, Mu*; Duan, WanSuo; Tang, YouMin. (2017). The predictability of atmospheric and oceanic motions: Retrospect and prospects. Science China-Earth Sciences, 60(11), 2001-2012. doi:10.1007/s11430-016-9101-xpdf (24) Mu, Mu; Feng, Rong; Duan, WanSuo. (2017). Relationship between optimal precursors for Indian Ocean Dipole events and optimally growing initial errors in its prediction. Journal of Geophysical Research: Oceans, 122(2), 1141-1153. doi:doi:10.1002/2016JC012527pdf (25) Mu, Mu; Ren, HongLi. (2017). Enlightenments from researches and predictions of 2014–2016 super El Niño event. Science China-Earth Sciences, 60(9), 1569. doi:doi:https://doi.org/10.1007/s11430-017-9094-5pdf (26) Peng, Fei; Mu, Mu; Sun, GuoDong. (2017). Responses of soil moisture to climate change based on projections by the end of the 21st century under the high emission scenario in the ‘Huang–Huai–Hai Plain’ region of China. Journal of Hydro-environment Research, 14, 105-118. doi:https://doi.org/10.1016/j.jher.2016.10.003pdf (27) Qin, JianHuang; Ding, RuiQiang; Wu, ZhiWei*; Li, JianPing; Zhao, Sen. (2017). Relationships between the Extratropical ENSO Precursor and Leading Modes of Atmospheric Variability in the Southern Hemisphere. Advances in Atmospheric Sciences, 34(3), 360-370. doi:10.1007/s00376-016-6016-zpdf (28) Qu, WeiYe; Chen, YaXin; Huang, ZhiWei; Gao, JiaYi; Zhou, MeiJuan; Chen, JunXiao; Li, Chao; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2017). Active Tetrahedral Iron Sites of gamma-Fe2O3 Catalyzing NO Reduction by NH3. Environmental Science & Technology Letters, 4(6), 246-250. doi:10.1021/acs.estlett.7b00124pdf (29)Su, JingZhi; Zhang, RenHe; Wang, HuiJun. (2017). Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Scientific Reports, 7, 43735. doi:10.1038/srep43735pdf (30) Sun, Guodong; Mu, Mu. (2017a). Projections of soil carbon using the combination of the CNOP-P method and GCMs from CMIP5 under RCP4.5 in north-south transect of eastern China. Plant soil, 413(1), 243-260. doi:10.1007/s11104-016-3098-4pdf (31) Sun, GuoDong; Mu, Mu*. (2017b). Responses of Terrestrial Ecosystem to Climate Change: Results from Approach of Conditional Nonlinear Optimal Perturbation of Parameters. In S. K. Park; L. Xu (Eds.), Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III) (pp. 527-547). Cham: Springer International Publishingpdf (32) Sun, GuoDong; Peng, Fei; Mu, Mu. (2017). Variations in soil moisture over the ‘Huang-Huai-Hai Plain’ in China due to temperature change using the CNOP-P method and outputs from CMIP5. Science China-Earth Sciences, 60(10), 1838-1853. doi:10.1007/s11430-016-9061-3pdf (33) Sun, Jia; Wang, GuiHua*; Zuo, JunCheng; Ling, Zheng; Liu, DaHai. (2017). Role of surface warming in the northward shift of tropical cyclone tracks over the South China Sea in November. Acta Oceanologica Sinica, 36(5), 67-72. doi:10.1007/s13131-017-1061-8pdf (34) Wang, Xinke; Hayeck, Nathalie; Brüggemann, Martin; Yao, Lei; Chen, HangFei; Zhang, Ci; Emmelin, Corinne; Chen, JianMin; George, Christian; Wang, Lin. (2017). Chemical Characteristics of Organic Aerosols in Shanghai: A Study by Ultrahigh-Performance Liquid Chromatography Coupled With Orbitrap Mass Spectrometry. Journal of Geophysical Research-Atmospheres,122(21),11,703-711,722. doi:doi:10.1002/2017JD026930pdf (35) Wu, BingYi*. (2017). Winter Atmospheric Circulation Anomaly Associated with Recent Arctic Winter Warm Anomalies. Journal of Climate, 30(21), 8469-8479. doi:10.1175/jcli-d-17-0175.1pdf (36) Wu, BingYi*; Yang, Kun; Francis, Jennifer A. (2017). A Cold Event in Asia during January-February 2012 and Its Possible Association with Arctic Sea Ice Loss. Journal of Climate, 30(19), 7971-7990. doi:10.1175/jcli-d-16-0115.1pdf (37) Xie, YuanYuan; Ye, XingNan; Ma, Zhen; Tao, Ye; Wang, RuYu; Zhang, Ci; Yang, Xin; Chen, JianMin*; Chen, Hong. (2017). Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements. Atmos. Chem. Phys., 17(11), 7277-7290. doi:10.5194/acp-17-7277-2017pdf (38) Yan, Yunwei; Ling, Zheng; Chen, Changlin. (2017). Opposite responses of the diurnal amplitude of sea surface temperature to the Madden-Julian Oscillation. Deep-Sea Research Part I, 130, 30-35. doi:10.1016/j.dsr.2017.08.010pdf (39) Yu, HuiZhen; Wang, HongLi ; Meng, ZhiYong; Mu, Mu; Huang, XiangYu; Zhang, Xin. (2017). A WRF-Based Tool for Forecast Sensitivity to the Initial Perturbation: The Conditional Nonlinear Optimal Perturbations versus the First Singular Vector Method and Comparison to MM5. Journal of Atmospheric and Oceanic Technology, 34(1), 187-206. doi:10.1175/jtech-d-15-0183.1pdf (40) Yu, LuLu; Wu, ZhiWei*; Zhang, RenHe; Yang, Xin. (2017). Partial least regression approach to forecast the East Asian winter monsoon using Eurasian snow cover and sea surface temperature. Climate Dynamics, 51, 4573-4584. doi:10.1007/s00382-017-3757-zpdf (41) Zhang, Kun; Mu, Mu; Wang, Qiang. (2017). Identifying the sensitive area in adaptive observation for predicting the upstream Kuroshio transport variation in a 3-D ocean model. Science China-Earth Sciences, 60(5), 866-875. doi:10.1007/s11430-016-9020-8pdf (42) Zhang, Peng; Wu, ZhiWei*; Chen, Hua. (2017). Interdecadal Variability of the ENSO–North Pacific Atmospheric Circulation in Winter. Atmosphere-Ocean, 55(2), 110-120pdf (43)Zhang, RenHe*. (2017). Warming boosts air pollution. Nature Climate Change, 7(4), 238-239pdf (44) Zhang, RenHe*; Min, QingYe; Su, JingZhi. (2017). Impact of El Nino on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Science China-Earth Sciences, 60(6), 1124-1132. doi:10.1007/s11430-016-9026-xpdf (45) Zhang, XinChang; Zhong, ShanShan; Wu, ZhiWei*; Li, Yun. (2017). Seasonal prediction of the typhoon genesis frequency over the Western North Pacific with a Poisson regression model. Climate Dynamics, 51, 4585-4600. doi:10.1007/s00382-017-3654-5pdf (46) Zhang, Xing; Mu, Mu; Wang, Qiang; Pierini, Stefano. (2017). Optimal precursors triggering the Kuroshio Extension state transition obtained by the Conditional Nonlinear Optimal Perturbation approach. Advances in Atmospheric Sciences, 34(6), 685-699. doi:10.1007/s00376-017-6263-7pdf (47) Fan, Fangxing; Dong, Xiao; Fang, Xianghui; Xue, Feng; Zheng, Fei; Zhu, Jiang. (2017). Revisiting the relationship between the South Asian summer monsoon drought and El Niño warming pattern. Atmospheric Science Letters, 18(4), 175-182. doi:10.1002/asl.740 pdf (48) 穆穆*; 段晚锁; 唐佑民. (2017). 大气-海洋运动的可预报性:思考与展望. 中国科学: 地球科学(10)pdf (49) 穆穆; 任宏利. (2017). 2014~2016年超强厄尔尼诺事件研究及其预测给予我们的启示. 中国科学:地球科学(9)pdf (50) 穆穆*; 王强. (2017). 非线性最优化方法在大气-海洋科学研究中的若干应用. 中国科学: 数学(10), 1207-1222pdf (51) 田青; 温敏; 张人禾; 高辉. (2017). 中国南方冬季持续性温湿异常事件的分类和特征分析. 气象学报, 75(5), 729-743pdf (52) 许乐心; 张人禾; 齐艳军. (2017). 长江中游和下游夏季降水季节内振荡的差异. 大气科学, 41(6), 1125-1140pdf (53) 张人禾*; 闵庆烨; 苏京志. (2017a). 厄尔尼诺对东亚大气环流和中国降水年际变异的影响:西北太平洋异常反气旋的作用. 中国科学:地球科学, 47(5), 544-553pdf (54) 张人禾*; 闵庆烨; 苏京志. (2017b). 有关副热带太平洋对ENSO影响研究的综述. 海洋气象学报, 37(1), 1-9pdf (1) Chen, YaXin; Huang, ZhiWei; Zhou, MeiJuan; Hu, PingPing; Du, ChengTian; Kong, LingDong; Chen, JianMin; Tang, XingFu. (2016). The active sites of supported silver particle catalysts in formaldehyde oxidation. Chemical Communications, 52(65): 9996-9999. doi:10.1039/c6cc03097apdf (2) Lu, ZhuMin; Wang, GuiHua*; Shang, XiaoDong. (2016). Response of a Preexisting Cyclonic Ocean Eddy to a Typhoon. Journal of Physical Oceanography, 46(8): 2403-2410. doi:10.1175/Jpo-D-16-0040.1pdf (3) Sun, RuiLi; Wang, GuiHua*; Chen, ChangLin. (2016). The Kuroshio bifurcation associated with islands at the Luzon Strait. Journal of Geophysical Research: Oceans, 43(11): 5768-5774. doi:10.1002/2016gl069652pdf (4) Wang, GuiHua*; Wu, LingWei; Johnson, Nathaniel C; Ling, Zheng. (2016). Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones. Geophysical Research Letters, 43(14): 7632-7638pdf (5) Wang, Xiaoyan; Wang, Kaicun; Su, Liangyuan. (2016). Contribution of Atmospheric Diffusion Conditions to the Recent Improvement in Air Quality in China. Scientific Reports, 6: 36404. doi:10.1038/srep36404pdf (6) Zheng, Li; Zhou, MeiJuan; Huang, ZhiWei; Chen, YaXin; Gao, JiaYi; Ma, Zhen; Chen, JianMin; Tang, XingFu. (2016). Self-Protection Mechanism of Hexagonal WO3-Based DeNO(x) Catalysts against Alkali Poisoning. Environmental science & technology, 50(21): 11951-11956. doi:10.1021/acs.est.6b03203pdf (7) Zheng, Fei; Fang, Xiang-Hui; Zhu, Jiang; Yu, Jin-Yi; Li, Xi-Chen. (2016). Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophysical Research Letters, 43(24): 12,560-512,568. doi:10.1002/2016gl071636pdf |