房世波(Shibo Fang) 房世波 研究员 fangshibo@cma.gov.cn,sbfang0110@163.com 010-68406142 研究兴趣 卫星气象遥感、水资源遥感和农业气象研究 教育背景 2013.01-2014.01,美国佛罗里达大学,气候研究所,访问教授1年 2006.05-2006.07,获得加拿大政府研究专项奖(SACS),加拿大访问2个月 2001.09-2004.06,成都理工大学,环境遥感专业博士毕业 1994.09-2001.06,南京农业大学,农业环境科学专业, 本科和硕士毕业 研究经历 2013.05-至今,中国气象科学研究院研究员,博士生导师 2022.06-至今,中国科协“全球气象灾害与粮食安全”决策咨询团队首席 2011.05-至今,联合国世界气象组织(WMO) 农业气象专家组( ET-AAS)专家,以及世界气象组织(WMO)农业气象委员会(CAgM)委员 2018.05 —,江西省委省政府特聘专家 2017.08—,国际数字地球学会中国国家委员会委员 2017.08—,国际数字地球学会中国国家委员会数字减灾专委会副主任委员 2013.01-2014.01,美国佛罗里达大学,气候研究所,访问教授,合作Jim Jones院士 2011.07-2024.04,中国农学会农业气象分会,副秘书长 2007.06-2013.04,中国气象科学研究院,助理研究员,副研究员 2004.12-2007.06,中国科学院植物所,全球变化生态学博士后,导师 张新时院士 2004.07-2004.11,北京科技大学,讲师 承担课题 1. 主持在研国家重点研发项目 (2023年度项目) “气候变化背景下中美水资源遥感和高耗水作物面积调减” (2023YFE0122200,2023.12-2026.11) 2. 主持在研英国政府牛顿基金项目CSSP-China (气候科学支持服务伙伴关系中国项目) “VEgetation near Real time Detection And moNiToring for China (VERDANT) [CHN19/1 (Vegetation/crop monitoring) P107722]. (202004-202106)” (中方主持) 3. 主持结题国家自然科学基金重点国际合作项目(牛顿基金):中英国际合作项目“基于高分雷达遥感和快中子的水分传感技术,发展近实时的高时空分辨率的区域土壤湿度监测方法”(61661136005,2016-2019), 4. 主持和结题国家国际科技合作专项: 中加国际合作项目“气候变化背景下,作物和牧草长势遥感监测和产量预报系统的研制”(2009DFA91900, 2009-2012), 5. 主持结题科技部公益性院所科研业务费重点项目“基于卫星遥感的农业干旱监测关键技术” (2019Z010,201901-202112:) 6. 主持结题国家重点研发计划项目“全球气象卫星遥感动态监测、分析技术及定量应用方法及平台研究”(2018YFC1505600)专题 “多源卫星遥感全球干旱的定量监测关键技术研究”, 7. 主持在研国家自然科学基金面上项目“华北平原冬小麦种植面积调减和节水增效研究 (42075193,202101-202412:), 8. 主持结题国家自然科学基金面上项目“增温和推迟播种对冬小麦生长和产量的影响的大田实验研究(41375117, 2014-2017), 9. 主持结题国家自然科学基金青年基金“生物土壤结皮对水份的响应及其遥感光谱特征研究”(30700107,2007-2009), 10. 主持在研国家外国专家局2017引进境外技术重点外国专家项目"基于雷达遥感的洪涝和农业干旱监测研究", 11. 主持结题科技部公益性院所科研业务费项目“冬春连旱对冬小麦产量影响的土壤墒情指标研究” (2011Y001, 2011-2013), 12. 主持结题科技部公益性院所科研业务费项目“夜间增温对冬小麦生长和产量的影响”(2008Y005), 13. 主持在研中国气象局风云卫星应用先行计划项目 FY-3E微光成像和GNOSⅡ反射信号监测火点、洪涝和干旱(FY-APP-2021.03010) 教学经历 2022年08月 —2022年08月,陆表气象灾害卫星遥感监测技术,世界气象租住国际培训班,中国气象局培训中心 2023年08月 —2023年08月,陆表气象灾害卫星遥感监测技术,世界气象租住国际培训班,中国气象局培训中心 2019-2023年每年5月,农业气象科技进展课(讲农业气象灾害卫星遥感方法),中国农业科学院研究生院 学术兼职 现为世界气象组织农业气象专家委员会委员和专家组专家、中国遥感应用协会生态气象遥感专委会主任委员,国际数字地球学会中国国家委员会委员、国际数字地球学会中国国家委员会数字减灾专委会副主任委员、中国农学会农业气象分会副秘书长等。 获奖情况 2022,中国气象局“十三五”以来的“优秀”科技成果, 一等奖, (排名1) 2020,获得:中国测绘学会,中国测绘科学技术奖,二等奖(排名1) 2021,获得:中国产学研促进会,中国产学研合作创新成果奖,一等奖(排名1) 2020,通讯作者论文获得:与“赵九章奖”同属于国际科学理事会国际空间研究委员会的八个奖项之一的“青年科学家杰出论文奖”。通讯作者论文发表于Advances in Space Research, 2019, 63: 750-765 发表论文 (仅近5年论文,本人名称加粗,通讯作者加*号) 1. Y. Yu, S. Fang*, W. Zhuo and J. Han, "A Fast and Easy Way to Produce a 1-Km All-Weather Land Surface Temperature Dataset for China Utilizing More Ground-Based Data, IEEE Transactions on Geoscience and Remote Sensing, vol. 62, pp. 1-16, 2024, Art no. 5002016, doi: 10.1109/TGRS.2024.3368707. 2. Jiahao Han, Shibo Fang * , Qianchuan Mi, et al. A time-continuous land surface temperature (LST) data fusion approach based on deep learning with microwave remote sensing and high-density ground truth observations. Science of the Total Environment. 2024,169992, https://doi.org/10.1016/j.scitotenv.2024.169992. 3. Wang, L.; Han, X.; Fang, S.; Xiao, F. Comprehensive Assessment of NDVI Products Derived from Fengyun Satellites across China. Remote Sens. 2024, 16, 1363. https://doi.org/10.3390/rs16081363 4. Jilin Yang,,Jinwei Dong , Luo Liu, Miaomiao Zhao,… Shibo Fang , Yong Pang. A robust and unified land surface phenology algorithm for diverse biomes and growth cycles in China by using harmonized Landsat and Sentinel-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 2023,2020:610-636 5. Yanru Yu, Shibo Fang * and Wen Zhuo. Revealing the Driving Mechanisms of Land Surface Temperature Spatial Heterogeneity and Its Sensitive Regions in China Based on GeoDetector. Remote Sens. 2023, 15, 2814. https://doi.org/10.3390/rs15112814 6. J Zhang, S Fang*, H Liu. Estimation of alpine grassland above-ground biomass and its response to climate on the Qinghai-Tibet Plateau during 2001 to 2019. Global Ecology and Conservation 35, e02065, 2022. https://doi.org/10.1016/j.gecco.2022.e02065 7. W Zhuo, S Fang*, X Gao, L Wang, D Wu, S Fu, Q Wu, J Huang. Crop yield prediction using MODIS LAI, TIGGE weather forecasts and WOFOST model: A case study for winter wheat in Hebei, China during 2009–2013. International Journal of Applied Earth Observation and Geoinformation 106 …, 2022. https://doi.org/10.1016/j.jag.2021.102668 8. L Wang, S Fang*, Z Pei, D Wu, Y Zhu, W Zhuo .Developing machine learning models with multisource inputs for improved land surface soil moisture in China. Computers and Electronics in Agriculture 192, 106623, 2022. https://doi.org/10.1016/j.compag.2021.106623 9. DN Khoi, PT Loi, NTT Trang, ND Vuong, S Fang, PTT Nhi, The effects of climate variability and land-use change on streamflow and nutrient loadings in the Sesan, Sekong, and Srepok (3S) River Basin of the Lower Mekong Basin. Environmental Science and Pollution Research 29 (5), 7117-7126, 2022 10.1007/s11356-021-16235-w 10. D Wu, S Fang*, X Tong, L Wang, W Zhuo, Z Pei, Y Wu, J Zhang, M Li, Analysis of variation in reference evapotranspiration and its driving factors in mainland China from 1960 to 2016. Environmental Research Letters 2021, 10.1088/1748-9326/abf687 11. Wu, D et al, Fang, SB*. A new agricultural drought index for monitoring the water stress of winter wheat. Agricultural Water Management, 2021, 244 , DOI: 10.1016/j.agwat.2020.106599 12. Dong Wu, Shibo Fang*, Xuan Li, et al. Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain. Agricultural Water Management 214 (2019) 78–86 13. Wang Lei; Fang Shibo*; Pei Zhifang; Zhu Yongchao; Khoi Dao Nguyen; Han Wei; Using FengYun-3C VSM data and multivariate models to estimate land surface soil moisture, Remote Sensing, 2020, 12: 1038. 14. Wang Lei; Wang Pengxin; Liang Shunlin; Zhu Yongchao; Khan Jahangir; Fang Shibo*; Monitoring maize growth on the North China Plain using a hybrid genetic algorithm-based back-propagation neural network model, Computers and Electronics in Agriculture, 2020, doi.org/10.1016/j.compag.2020.105238. 15. Y Wu, S Fang*, Y Xu, L Wang, X Li, Z Pei, D Wu.Analyzing the probability of acquiring cloud-free imagery in China with AVHRR cloud mask data.Atmosphere 12 (2), 214, 2021 10.3390/atmos12020214 16. Xuan Li, Shibo Fang*,et al,. 2021,Risk Analysis of Wheat Yield Losses at the County Level in Mainland. Frontiers in Environmental Science | (2021) 9| doi: 10.3389/fenvs.2021.642340 17. X Li, S Fang*, Y Zhu, D Wu, Risk analysis of wheat yield losses at county level in mainland ChinaX. Frontiers in Environmental Science 9, 141 2021 18. Wang, L; Zhuo, W ; Pei, ZF; Tong, XY; Han, W; Fang, SB*.Using Long-Term Earth Observation Data to Reveal the Factors Contributing to the Early 2020 Desert Locust Upsurge and the Resulting Vegetation Loss. REMOTE SENSING,2020,13 (4) DOI: 10.3390/rs13040680 19. Xuan Li, Shibo Fang*, Dong Wu, Yongchao Zhu & Yingjie Wu . Risk analysis of maize yield losses in mainland China at the county level. Scientific Reports ,2020,10, 10684 20. Zhifang Pei, Shibo Fang *,Lei Wang 1 and Wunian Yang. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925; doi:10.3390/w12071925 21. Zechao Bai Shibo Fang*, Jian Gao, Yuan Zhang, Guowang Jin, Shuqing Wang, Yongchao Zhu & Jiaxin Xu.Could Vegetation Index be Derivefrom Synthetic Aperture Radar? The Linear Relationship betweenI nterferometric Coherence and NDVI. Scientific Reports 2020,10:6749 | https://doi.org/10.1038/s41598-020-63560-0 22. Jiaxin Xu, Shibo Fang*, Xuan Li and Zichun Jiang Indication of the Two Linear Correlation Methods Between Vegetation Index and Climatic Factors:An Example in the Three River-Headwater Region of China During 2000–2016. Atmosphere 2020, 11, 606; doi:10.3390/atmos11060606 23. Pei Zhifang#; Fang Shibo#; Yang Wunian; Wang Lei;, Wu Mingyuan; Zhang Qifei; Han Wei; Khoi Dao Nguyen; The Relationship between NDVI and climate factors at dierent monthly time scales: A case study of grasslands in Inner Mongolia, China (1982–2015), Sustainability, 2019, 11: 7243 24. Yongchao Zhu, Xuan Li, Simon Pearson, …. Shibo Fang*. Evaluation of Fengyun-3C Soil Moisture Products Using In-Situ Data from the Chinese Automatic Soil Moisture Observation Stations: A Case Study in Henan Province, China. Water 2019, 11, 248; doi:10.3390/w11020248 25. 陈燕丽;房世波*;莫建飞;刘志平, 基于地基可见光图像的喀斯特典型植被长势监测.遥感技术与应用, 2023,02,518-526 26. 彭慧文;赵俊芳;谢鸿飞;房世波, 作物模型应用与遥感信息集成技术研究进展.中国农业气象, 2022,08,644-656 27. 余卫国;房世波;齐月;陈金华, ASTER数据地表温度产品精度评价.干旱气象, 2019,06,987-992+1011 28. 李梦倩, 房世波*,朱永超,等. 2021年夏季中国大陆涝渍灾害时空分布分析. 遥感学报. 2022, 26(9):1886-1893 29. 房世波*; 韩威; 裴志方, 沙漠蝗群对印巴边境植被的影响及其未来可能发展趋势. 遥感学报, 2020,03,326-332 30. 徐嘉昕,房世波, 张廷斌等.2000—2016年三江源区植被生长季NDVI变化及其对气候因子的响应.国土资源遥感, 2020,32( 1) : 237 246, doi: 10.6046 /gtzyyg.2020.01.32 31. 徐嘉昕, 李璇, 朱永超, 房世波*,等. 地表土壤水分的卫星遥感反演方法研究进展. 气象科技进展.2019,9(2):17-23 32. 武英洁,房世波*. 作物耕作节律与多时相遥感结合的山地耕地信息提取方法探索. 西南农业学报. 2020,33(2): 374-380, DOI: 10.16213 /j.cnki.scjas.2020.2.025 33. 张 菊,房世波. 基于微波数据与光学数据集成的机器学习技术在作物产量估算中的应用. 2021,地理信息科学,2021,23(6):1082-1091 出版书籍 1.房世波等编著,卫星遥感土壤水分及干旱监测, 气象出版社, 2020-10 2. 蒋云志和房世波著,遥感时间序列分析, 成都电子科技大学出版社, 2014-12, 3. 房世波等编著,气候变暖对中国农业的影响, 气象出版社, 2024-04 4. 韩秀珍, 任素玲,徐榕焓,房世波,刘清华, 武胜利, 耿维成 等著. 多源卫星遥感全球主要气象灾害定量监测关键技术研究. 气象出版社, 2024-02 5. 中国农业应对气候变化蓝皮书NO.1, 中国社会文献出版社, 2014-05, 房世波第 5 作者 6. 中国农业应对气候变化蓝皮书NO.2, ,中国文献出版社, 2016-11, 房世波第 5 作者 软著专利等知识产权 2020,基于微波卫星遥感的农牧干旱和长势监测系统V1.0,软著登字第5179101号(排名1) 2020,中国植被生长状况遥感监测系统V1.0,软著登字第5325663号(排名1) 2011,植被长势卫星遥感监测系统V1.0,软著登字第0394241号(排名1) 2012,叶绿素含量遥感估算软件V1.0,软著登字第0479985号(排名1) 其它情况,国内外主要合作单位 (1)复大大学 (2)中国科学院大气物理所 (3)中国科学院大学 (4) 中国科学院植物研究所植被与环境变化国家重点实验室 (5) 南京信息工程大学气象灾害预报预警与评估协同创新中心 (6) 成都理工大学地学空间信息技术重点实验室 (7) 美国佛罗里达大学气候研究所 (http://www.floridaclimateinstitute-uf.org/) (8) 英国林肯大学农业与食品技术研究所 (http://www.lincoln.ac.uk/home/researchatlincoln/researchshowcase/futureoffoodandfarming/) (9)中佛罗里达大学飓风暴雨研究院(https://stormwater.ucf.edu/) (10) 加拿大萨斯喀彻温大学地理系(http://artsandscience.usask.ca/geography/) (11) 英国生态与水文中心(https://www.ceh.ac.uk/) #以上信息由本人提供,更新时间:2024/09/25 |